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ABSTRACT

This thesis proposes an agile framework to accelerate the development of Social Media
Analysis (SMA) systems by tackling some of the fundamental challenges of processing
user generated content and the main limitations of current methodologies. The noise,
brevity and ambiguity of social media pose challenges to traditional NLP methods, often
forcing analysts to rely on sub-optimal methods or devote extensive manual efforts
in the development of specialized models. On the other hand, social media users are
not a representative sample of the population. Yet, current approaches tend to ignore
the inherent biases of social media, and thus the outcomes of the analyses might not
reflect broader trends. The proposed framework relies on a novel method to derive
low-resource supervised neural networks in two steps: (i) learning unsupervised neural
embeddings for words and users; (ii) constructing minimalist neural architectures that
yield low-capacity models, which can be trained with scarce labeled data. By reducing the
efforts of developing specialized models, the framework facilitates the deployment of more
sophisticated SMA systems. In this work, it is used to implement methodologies to sample
demographically representative digital cohorts of social media users. These cohorts can
be leveraged to conduct demographically controlled studies, thereby mitigating sampling
biases and allowing analysts to extrapolate findings gleaned from imperfect datasets and
affording deeper insights. The evaluation of the framework was conducted over two case-
studies, one involving the development of bespoke classifiers for social sciences studies,
and the other concerned with the deployment of DEMOS, a novel digital epidemiology
system to track public health discussions and monitor the prevalence of mental illnesses.
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RESUMO

Esta tese propõe uma plataforma ágil para acelerar o desenvolvimento de sistemas de
Análise de Social Media (ASM), abordando alguns dos principais desafios inerentes ao
processamento automático de conteúdos gerados por utilizador e as principais limitações
das metodologias atuais. O ruído, a brevidade e a ambiguidade destes conteúdos colocam
desafios aos métodos tradicionais de PLN, muitas vezes forçando os analistas a utilizar
a métodos subótimos ou a dedicar grandes esforços ao desenvolvimento manual de
modelos especializados. Por outro lado, os utilizadores de social media não são uma
amostra representativa da população. No entanto, as abordagens atuais tendem a ignorar
os vieses inerentes a estes dados, e como tal os resultados das análises podem não
refletir as tendências do público em geral. A plataforma proposta assenta num método
novo para derivar redes neuronais supervisionadas com recursos limitados em duas
etapas: (i) induzir vectores neuronais não-supervisionados para palavras e utilizadores;
(ii) construir arquiteturas neuronais minimalistas que produzam modelos de baixa
capacidade, que podem ser treinados com poucos dados anotados. Com a redução dos
esforços de desenvolvimento de modelos especializados, a plataforma facilita a produção
de sistemas de ASM mais sofisticados. Neste trabalho, esta é usada para implementar
metodologias de amostragem de coortes digitais demograficamente representativas de
utilizadores de social media. Estas coortes podem ser usadas para conduzir estudos
demograficamente controlados, mitigando assim os típicos vieses de amostragem, o que
permite aos analistas extrapolar resultados obtidos a partir de dados imperfeitos e
derivar ilações mais profundas. A avaliação da plataforma foi feita em dois casos de
estudo, o primeiro envolveu o desenvolvimento de classificadores especializados para
estudos no domínio das ciências sociais, e o outro consistiu na implementação do DEMOS,
um novo sistema de epidemiologia digital para rastrear discussões relacionadas com
saúde pública e monitorar a prevalência de doenças mentais.
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1
INTRODUCTION

The emergence of social media networks profoundly transformed the ways in which

people communicate, interact and access information1. Nowadays, billions of

people use these platforms daily to connect and share anything with close friends

or the public at large — from personal experiences to reactions to worldly issues and

events. These digital interactions leave behind a wealth of data about personal interests,

behavior and moods, which provide a lens through which human and societal dynamics

can be investigated at unprecedented scales (Helbing and Balietti, 2011). The availability

of large volumes of personal data has the potential to revolutionize disciplines concerned

with human activities that have lacked enough data to afford data-driven methods, such

as the social sciences (Lazer et al., 2009), public health and epidemiology (Paul and

Dredze, 2011; Salathe et al., 2012), and clinical psychology (Coppersmith et al., 2014a),

among others. Traditional data collection methodologies for these disciplines (e.g. polls,

surveys and direct interviews) are hampered by several limitations, such as the difficulty

in reaching participants, the lag time between campaign design, data collection and

data availability, as well as the significant associated costs. Such methodologies are thus

difficult to scale to large samples, leading experts to rely on incomplete and outdated

surveillance data (e.g. epidemiologists can only assess the impact of health interventions

long after the fact).

In contrast, social media analysis systems can tap into much larger datasets to keep

track of specific issues in real-time and, once deployed, can support longitudinal analyses

1http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/

1
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CHAPTER 1. INTRODUCTION

Figure 1.1: An example of a person’s interactions with the health care system (red
hashes), and Facebook posts (blue) over a period of four years. The ability to extract
signals from social media feeds could inform clinicians about general patients well-being,
provide complementary information for diagnosis, and help tracking disease progression
or intervention outcomes. This plot is a reproduction from (Coppersmith et al., 2017).

with minimal maintenance costs. Moreover, these methods can potentially reach swaths

of the population that tend to be excluded or underrepresented in traditional estimates,

e.g. people that do not have access to the health-care system (see Figure 1.1).

1.1 Social Media Analysis

Social Media Analysis is based on the assumption that the topics and emotional tone

of social media chatter reflects the zeitgeist and correlates with external events and

circumstances. Therefore, by mining this data one can get insights into current states

of affairs — e.g. public opinion on relevant issues (O’Connor et al., 2010) and socio-

demographic indicators (Mitchell et al., 2013) —, and even predict the outcomes of

future events, e.g. stock-market movements (Bollen et al., 2011b), movie box-office

revenues (Asur et al., 2010) or electoral results (Tumasjan et al., 2010). In practice, SMA

systems are operationalized as data processing pipelines, as depicted in Figure 1.2, to

realize the following main steps:

1. Data Collection: find and retrieve the relevant content (e.g. tweets about a target

politician);

2. Natural Language Processing: extract specific linguistic signals from the data,

leveraging Natural Language Processing methods (e.g. opinions about said politi-

cian). These methods can be operationalized with lexicon-based approaches or with

machine learning models, and produce analytics over posts, individual users, or

groups of users.

3. Data Analysis: aggregate and process the extracted linguistic signals so as to

transform these data into statistics, which can then be interpreted directly or as

2



1.1. SOCIAL MEDIA ANALYSIS

proxies for other measurements (e.g. voting intentions).

Figure 1.2: High-level depiction of the main steps of a social media analysis pipeline.
The plots were taken from real-world analyses conducted in this thesis. The topmost
shows the reactions on Twitter to a visit of the German Chancellor Angela Merkel to
Portugal, measured with a lexicon-based system — the plot shows sentiment-bearing
words used in tweets about the event, as bubbles of size proportional to their frequency.
The middle is from POPMine, a political opinion mining for the web, that uses document-
level supervised models to track the popularity and sentiment about Portuguese political
entities, over time (Chapter 2). The bottommost is from DEMOS, a digital epidemiology
system focused on mental-health issues, that will be described in Chapter 6 — the plot
shows the relative prevalence of depression across demographic groups, estimated with
user-level models over a cohort of US Twitter users.

The potential impact of social media analysis across a wide range of domains fostered

significant research in these technologies, yielding promising results for a variety of

applications. Nevertheless, in many cases, claims about the merits of the proposed

methods have been somewhat exaggerated. For example, approaches claiming that could

3



CHAPTER 1. INTRODUCTION

have predicted the outcome of an election with simple methods based on counting the

mentions of political candidates and rudimentary sentiment analysis, performed no

better than a random estimator when applied to other elections (Chung and Mustafaraj,

2011; Metaxas et al., 2011; Jungherr et al., 2012). These works have been widely criticized

for oversimplifying complex problems, ignoring the inherent biases of social media, failing

to justify arbitrary methodological decisions (e.g. excluding smaller parties from the

analyses), and relying on simplistic NLP methods to analyze subjective and nuanced

communications (Gayo-Avello, 2013). The peculiarities of user generated content and

social media platforms poses new problems to traditional NLP methods and requires

more sophisticated data analysis methodologies.

This thesis aims to address these problems and lay the necessary groundwork go

beyond the somewhat simplistic SMA methodologies that have been employed thus far.

First, by shedding light into the main challenges of building accurate social media mining

systems and their inherent limitations; and second, by applying the resulting insights

into tools and methodologies to improve the deployment of SMA systems for various

applications. Let us begin then, by taking a closer look into the main tasks involved in

building SMA systems and their associated challenges. As a motivating example, we will

consider the development of a political opinion mining system for Twitter data but this

discussion is equally relevant for other domains and applications.

1.1.1 Data Collection

The first step of building a SMA system is setting up data collection methods and defining

a set of search keywords to retrieve relevant content. Selecting the right set of search

terms, however, might not be a trivial task, e.g. a politician might be referred by various

names, nicknames or titles (e.g. the prime minister). This is even harder for more abstract

topics (e.g. the economy) — too broad terms might yield a lot of unrelated content but

too narrow terms might miss a great deal of the discussion. On the other hand, Twitter

serves multiple purposes and hosts content created by billions of users, some of which

correspond to individual citizens but others belong to organizations, brands, media

outlets, celebrities and social bots, among others. Incidentally, the latter usually generate

much more content, hence we can easily run into the problem of the ‘vocal’ minority

overshadowing the ‘silent’ majority. Particularly, if these entities have a vested interest

in the matter at hand or there are incentives to manipulate the public perception, which

raises concerns regarding the credibility of the data. Indeed, we have seen concrete

examples of this issue in the 2016 elections in the United States and France, and recent
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research shows an increase in socket-puppet Twitter accounts (Bessi and Ferrara, 2016;

Ferrara, 2017).

Finally, it should also be noted that the population of Twitter users is not a representa-

tive sample of the general population (e.g. urban young adults tend to be overrepresented).

As such, trends or insights gleaned from these data might not be generalizable to the

general public. All these issues must be taken into account when trying to use social me-

dia to assess the public’s attitudes about a given matter or event. Social media datasets

are inherently noisy and thus näive data collection strategies, e.g. ignoring self-selection
biases and inadvertently including unrelated content, can severely thwart the validity of

the subsequent analyses.

1.1.2 Model Development

The second step concerns with the design and implementation of NLP systems to infer

relevant signals from the data. However, the informal and spontaneous nature of social

media communications poses significant challenges to standard NLP methods, which

were created for conventional language and editorial domains. Social media content tends

to be noisy, frequently containing misspellings, internet slang and other extra-linguistic

markers (e.g. emoji and emoticons); and short, providing little context to appreciate their

intended meaning. Therefore, generic text analysis methods that have been successful for

many objective tasks (e.g. topic detection or spam filtering) are insufficient for inferences

over subjective social media. On the one hand, manually crafted lexicons fail to capture

the informal style of social media language. On the other hand, simple statistical models

based on bag-of-word representations are hampered by feature sparsity issues, arising

from the large vocabularies needed to keep track of all the lexical diversity and the

brevity of individual posts. Furthermore, social media users often express subjective

views on complex issues with humor and sarcasm (Carvalho et al., 2009). As an example,

consider the tweet in Figure 1.3 — without the #sarcasm marker it would be difficult to

conclude with certainty whether the remark was intended sarcastically or in earnest.

Subjective and figurative language are more nuanced and ambiguous hence requiring

more sophisticated modeling approaches, e.g. taking the context of an utterance into

account is critical to discern ironic intent (Wallace et al., 2014).

Overcoming these issues requires considerable manual efforts in the annotation of

large labeled datasets and the research and development of specialized features for

supervised machine learning models. This often requires custom NLP tools and re-

sources which are language and domain dependent and thus cannot be easily transferred
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Figure 1.3: A sarcastic tweet.

across applications. On the other hand, creating these assets from scratch is a laborious

endeavor, often requiring extensive domain knowledge and subject matter expertise.

1.1.3 Data Analysis

The final step entails applying statistical analysis and data mining techniques (e.g.

aggregation, smoothing, clustering) to distill structured information from the output

of the aforementioned inference models. This information can then be used to build

information visualization tools allowing for analysts to explore, interpret and generate

new insights from the data. The question then becomes how to map the inferred signals

into an objective measurement of interest, e.g. how can the opinions inferred from a set of

tweets be mapped into a measure of vote intention? Regardless of the mapping of choice

however, it might still be difficult to interpret the meaning or the implications of a single

measurement aggregating many noisy signals, as it can hide much of the complexity

and nuance of the subject matter. Time-series can be more informative by showing how

a measurement evolves over time, but without context it can still be difficult to know

why a certain change is observed. It can then be tempting to process the data in a way

that matches prior expectations, which can distort the results. This can also lead social

media analysts to only ask very narrow or pre-conceived questions about complex issues,

rather than allowing the data to dictate the relevant questions, which can also introduce

confirmation biases. In summary, current social media analysis approaches can capture

general trends but often fail to provide adequate context to understand said trends and

produce valid insights.
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1.2 Research Goals and Contributions

Despite all the enthusiasm and research around social media analysis, in practice, build-

ing and deploying these systems remains a complex and costly endeavor. In part, due to

the multidisciplinary nature of many applications, often involving subject matter experts,

computer scientist and statisticians, but also because these systems are composed of

several disparate components (e.g. data crawlers, NLP tools, data analysis packages). The

development of each component usually involves non-trivial (and often subtle) decisions

that impact the overall behavior of the system. However, the major bottleneck of this

process is the development of custom NLP models.

1.2.1 Agile Social Media Analysis

Suppose we wanted to use social media to investigate the reactions to the results of

the 2016 US Presidential election, which was marked by the unexpected victory of the

republican nominee Donald Trump. Building a system for this purpose would require the

development of a pipeline of NLP models tailored for this task. However, this analysis

would only be relevant immediately after the fact, hence these models would need to

be deployed quickly. These elections were highly controversial and involved a variety of

unusual factors and circumstances. Therefore, to get a better understanding of the subject

we could want to identify key topics or issues related this event (e.g. the interference

of the Russian government) and then infer the attitudes about those issues. However,

this would require the development of additional models to further filter and categorize

the data. The tremendous manual efforts required to develop task-specific models can

prevent analysts from conducting time-sensitive analyses on a timely manner. It can

also restrict studies of complex or polarizing subjects to mere superficial analyses. A fair

investigation into such subjects often requires taking various perspectives into account,

but this requires multiple specialized models. Moreover, this constrains the application

of SMA to a limited set of languages and domains. Unlocking the true potential of social

media analysis requires agile methodologies to ease the efforts of building of specialized

NLP models.

The main goal of this thesis is to develop methods to support the agile deployment of

SMA systems for various applications and improve the quality of the analyses. First, by

investigating methods to tackle the fundamental challenges of processing subjective user

generated content (i.e., the noise, brevity and ambiguity) and build specialized models

for this content in low-resource settings. Second, by leveraging the low-resource models
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to operationalize methodologies to deal with the inherent biases of social media data,

thereby improving the validity of studies conducted over these data.

1.2.2 Agile Modeling with Low-Resource Neural Networks

To go beyond generic bag-of-words classifiers there are currently two main options: re-

searching and developing highly specialized features, or adopting representation learning

methods to automatically learn such features from data. Deep learning models gained

notoriety in recent years due to the ability to learn internal distributed representa-

tions, thus freeing practitioners from the burden of manually designing task-specific

features (Goodfellow et al., 2016). However, deep neural networks are more flexible and

complex (in terms of free model parameters) and thus require larger training datasets to

be optimized. Therefore, the manual efforts that could be saved in feature engineering

must now be devoted to producing larger annotated datasets, as well as searching for

the best architecture amongst a myriad of possible components and a huge configuration

space.

To address this issue, this thesis introduces a method to train supervised neural

networks in low-resource settings, by exploiting two key ideas:

1. unsupervised neural embedding learning: exploiting large amounts unla-

beled data to train neural embedding representations for words and users. The

resulting embeddings can be used as generic representations for various models

and provide an effective way to complement small hand-crafted resources.

2. low complexity neural architectures: constructing minimalist neural architec-

tures (i.e. with a single small hidden layer) that yield low-complexity models, but

with enough flexibility to learn and exploit specialized representations for the task

at hand. This helps to constrain the capacity of downstream models thus reducing

the chances of overfitting to small training datasets.

Decoupling the process of learning generic representations and specialized ones allows

for the same generic embeddings to be reused and adapted for various applications.

Furthermore, this method makes no assumptions with regards to what the embeddings

represent or how they were computed, thus providing leeway for different types of models

to be built — e.g., word embeddings can be used to derive models that operate over words

and sentences, and user embeddings can be leveraged to induce models that make

predictions with respect to users. For the former, one of the many recently proposed
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word embedding models can be used (e.g. Mikolov et al. (2013b)’s Skip-Gram). For the

latter, a novel neural language model is introduced to estimate user embeddings from

posting histories, that capture latent personal aspects and soft notion of homophily.

These user representations are then used to construct Content and User Embeddings
Neural Networks — novel family of deep neural networks that combine representations

of the content and of the author of a post, to support contextualized inferences over social

media. These methods were transposed into an agile modeling framework to accelerate

the development of SMA models by reducing manual efforts in feature engineering and

data annotation, and allowing linguistic resources and components to be adapted and

re-used.

1.2.3 Demographically Controlled Social Media Analysis

Social media analysts often seek to use social media to investigate human-related

phenomena and extrapolate the findings and insights to the general public. However,

the universe of social media users is not a representative sample of the population. Yet,

current SMA methodologies assume that all the data samples that can be collected about

a topic contribute equally to the analysis. Therefore, the findings gleaned from these

methods may not reflect broader trends. Moreover, this can distort the interpretations

of the outcomes — given the diversity of users and the plethora of use cases of these

platforms, it often becomes difficult to understand the underlying causes of an observed

measurement, and control for inherent biases or intentional manipulation efforts.

To address this problem, the aforementioned agile modeling framework is leveraged

to operationalize a methodology to automatically collect, process and organize social

media data, such that it can subsequently be used to sample demographically representa-

tive digital cohorts. Specifically, the framework is used to develop demographic inference

models to infer attributes of social media users, such as the age, gender and race/ethnicity.

The representative cohorts can then be used to conduct demographically controlled stud-

ies, thereby ameliorating both the selection and confirmation biases, and improving the

validity of analyses concerning national trends. Furthermore, demographic information

will allow analysts to ask more fine-grained questions, regarding not only the topics

that are discussed on social media, but also how these vary across the population, thus

fostering deeper insights into the subjects of study.
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1.2.4 Main Contributions

The main novel contributions from this doctoral research can be summarized as follows:

1. Low-resource Learning for Noisy NLP: A method to transform generic em-

bedding representations into task-specific ones, with scarce and noisy labeled

datasets (Astudillo et al., 2015b). This approach allows us to construct low-resource

neural networks for various applications and induce specialized models operating

at different levels of granularity: document-level, word-level (Amir et al., 2016a)

and user-level (Amir et al., 2017).

2. Unsupervised User Embedding Models: A neural language model to estimate

vector representations for social media users, which can be used to inform down-

stream predictive models for various tasks, including mental-health inference and

demographic inference (Amir et al., 2016c).

3. Contextualized Social Media Analysis Models: A family of neural network

architectures for textual inferences that combine lexical representations of the

contents of a post with representations of the author, which allows models to take

contextual information into account. These models can better deal with ambiguous

content (e.g. involving sarcasm) and support personalized inferences (Amir et al.,

2016c).

4. Shared Task Evaluations: Participation in international shared task competi-

tions including: various systems for SemEval Twitter Sentiment Analysis compe-

tition, all of which ranked amongst the top four submissions (Amir et al., 2014;

Astudillo et al., 2015a; Amir et al., 2016b); the top ranking submissions for Re-

pLab 2013 Online Reputation Monitoring shared task (Filgueiras and Amir, 2013)

and SemEval 2015 Twitter Sentiment Lexicon Induction shared task (Amir et al.,

2015).

5. Social Media Analyses: A methodology to sample digital cohorts of social media

users to support demographically controlled studies, and a publicly available

software toolkit with the models and linguistic resources developed in this thesis2.

This software has already been used to build real-world SMA applications for

computational journalists, political scientists, and epidemiologists.

2http://github.com/samiroid/ASMAT
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1.3 Thesis Summary

The remainder of this dissertation is organized as follows.

Chapter 2

This work stands at the intersection of various fields of study, thus this chapter aims to

acquaint the reader with the main concepts, ideas and challenges of this research. First,

by introducing the previous work done on social media analysis with particular emphasis

on applications related to public health and the social sciences. Then, it overviews

the current approaches to build NLP models for inferences over subjective content,

such as lexicon-based models and supervised machine learning approaches including

linear and neural network models. Finally, it outlines the main activities involved in

the development and deployment of SMA systems, and briefly describes some of the

preliminary work that paved the way to this dissertation.

Chapter 3

This chapter develops a method to build specialized models with low-resource supervised

neural networks. The main idea is to cast the problem of inducing specialized models

as that of extracting tailored representations from generic pre-trained embeddings. To

that end, the idea of embedding subspace is introduced as method to learn tailored

representations with scarce and noisy labeled datasets. Then, a predictive model based

on this concept is formalized — the Non-linear Subspace Embedding model (NLSE).

The model was first used to construct specialized document-level classifiers for a

set of popular academic Twitter sentiment analysis and opinion mining datasets. The

results showed that this method consistently outperforms simple off-the-shelf baselines

and other more sophisticated neural models (which require larger training datasets).

Then, this approach was validated in a case-study of real-world social media analyses for

the social sciences. The experiments were conducted over a range of datasets collected

and curated by computational social scientists at the Centre for the Analysis of Social
Media3 (CASM) to investigate a myriad of contemporary issues, from attitudes towards

politicians to reaction to natural disasters, as expressed by Twitter users. Again, the

results showed that leveraging specialized classifiers induced with the NLSE yields

much better results, particularly for subjective tasks.

34.
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Chapter 4

This chapter develops the low-resource modeling approach further — first, this method

is leveraged to build specialized word-level models. These models can then be used to

automatically expand small labeled lexicons and adapt them to social media environ-

ments. The evaluation was conducted by training models to predict the subjective ratings

assigned by human judges to seven well-known lexicons, describing 14 aspects (e.g. senti-

ment polarity and happiness score). The results demonstrate that the NLSE significantly

outperforms other baselines based on word embeddings. Second, it investigates the effect

of the subspace projection on the representation space; and measures the low-resource

learning ability of the NLSE.

The word-level models are then used to derive a large-scale sentiment lexicon for

downstream social media analysis applications. To assess the impact of the such lexicons

in practice, a set of experiments is conducted to compare the performance of lexicon-

based Twitter sentiment analysis systems based on small and expanded lexicons. The

results show that the latter can substantially improve the quality of lexicon-based models

provided that words that do not bear sentiment (i.e. neutral words) are removed.

Chapter 5

This chapter extends low-resource neural networks to support the development of user-

level and contextualized (document-level) models. To that end, it introduces the User2Vec,

a neural language model to estimate user embeddings which capture latent user aspects

and soft notion of homophily. The low-resource user-level models were evaluated over

a mental-health inference task, aiming to discriminate between users affected by de-

pression and post-traumatic stress disorder from matching controls, given their Twitter

posts. The results show that these models offer state-of-the-art performance and allow for

insightful analyses leveraging the user similarities captured by the embeddings. Then,

the user embeddings are leveraged to construct Content and User Embedding Neural
Networks which can be leveraged to derive contextualized models. The models combine

lexical representations extracted with a set of neural Convolutional filters and user

embedding representations, to support inferences over highly ambiguous and subjective

content. The evaluation was conducted over a sarcasm detection task, and showed that

these models can outperform a state-of-the-art sarcasm detection model that relies on a

heavily engineered set of features
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Chapter 6

This chapter deals with the practical aspect of deploying social media analysis campaigns,

and builds upon the methods introduced in the previous chapters to improve over

current methodologies. First, the aforementioned methods are transposed into an agile

modeling framework to accelerate the development of document-level, word-level, user-

level and contextualized models. Second, this framework is leveraged to operationalize a

methodology to conduct demographically controlled analyses. To that end, a process is

developed to automatically collect, process and organize social media data, such that it

can subsequently be used to sample demographically representative digital cohorts of

social media users.

These tools and methodologies are then validated in another case-study of real-world

social media analysis, now with focus on public health and epidemiology applications.

The case-study aims to assess the impact of demographic information in social media

studies; and provide a proof concept of a SMA system built with the methods introduced

in this thesis. The study consisted in the deployment of DEMOS, a Digital Epidemiology
and Mental-Health Observation System, designed to track discussions around specific

public health issues, and monitor the prevalence of mental illnesses over Twitter data. To

validate the system, two pilot studies of demographically controlled public health surveil-

lance over Twitter were conducted. The first, measuring how different demographic

groups engage with different health related issues. These analyses reveal differences in

the topics that are more relevant for different parts of the population (e.g young people

discuss pregnancy more than contraception). The second, uses the cohort to investigate

how mental illnesses affect different demographic groups — the results shows that

mental-health issues also manifest differently across the population (e.g. depression

and PTSD is more prevalent amongst women and racial minorities). This case-study

demonstrates that leveraging digital cohorts allows for more insightful interpretations

of social media analysis outcomes.

Chapter 7

This chapter, first presents the conclusions, main takeaways and limitations of this work.

Then, it briefly highlights some of my ongoing research that did not make it into the

thesis and points out relevant and promising avenues for future work.
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BACKGROUND AND PRELIMINARIES

This thesis aims to improve the quality of data-driven social media analysis

pipelines for various applications, and thus it stands at the intersection of several

disciplines and research areas. This chapter aims to provide an overview of the

relevant research topics, discuss previous work and highlight the current open challenges.

Section 2.1 discusses the seminal works using social media as a lens into current trends

and events, points out the main challenges of processing user generated content and

the limitations of current social media analysis methodologies. Section 2.2 describes the

main approaches to build NLP models for subjective language, reviews the literature

on two subjective tasks — Twitter sentiment analysis and sarcasm detection — and

briefly discusses methods to infer supervised machine learning models in low-resource

settings. Section 2.3 discusses neural representation learning algorithms and introduces

the main concepts of neural network models for NLP tasks. Section 2.4, addresses

the methodological aspects of deploying social media analysis pipelines for real-world

applications. First, by outlining the high-level process that governs the development

of these systems and describe the typical methodology that is used to materialize this

process. Second, by describing how this process was used to build a political opinion

mining system for the web. Section 2.5 summarizes and concludes the chapter.
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2.1 Predicting the Future (and the Present) with
Social Media Analysis

With the rise of web-based social networks, researchers from various fields have been

exploring the idea of using this data to tap into the ‘wisdom of crowds’ in hopes to get

insights into current and future worldly events and circumstances. Much work has been

done on the analysis of the structure of the networks themselves, e.g. to understand

the properties and emerging characteristics of large real-world social networks (Mislove

et al., 2007). The focus of this research, however, is on the use of NLP methods to analyze

the contents generated by the members of such social networks.

2.1.1 Predicting the Future

The possibility of using social media the outcomes of future events is fascinating and

the challenges it brings about has attracted significant attention from researchers and

businesses. A classic example is trying to predict electoral results from signals gleaned

from social media, such as the volume of messages about a candidate and the expressed

sentiment (Tumasjan et al., 2010; Bermingham and Smeaton, 2011; Marchetti-Bowick

and Chambers, 2012; Tjong Kim Sang and Bos, 2012). Others have used similar methods

to predict movie box-office revenues (Asur et al., 2010) and anticipate stock-market

movements (Bollen et al., 2011b; Zhang et al., 2011).

However, several researchers pointed out serious methodological flaws on previous

works claiming to be able to predict electoral results with basis on Twitter data (Jungherr

et al., 2012; Metaxas et al., 2011; Gayo Avello et al., 2011). For example, Jungherr et al.

(2012) replicated Tumasjan et al. (2010) method on a comparable dataset and found

that the predictions were very sensitive to experimental parameters, such as the period

of analyses and inclusion or exclusion of smaller parties. Yet, in the original paper no

adequate justification is given for these choices. By analyzing results from a number

of different elections Metaxas et al. (2011) concluded that Twitter data is only slightly

better than chance when predicting elections. It should be noted that chance is not a

realistic baseline, since incumbency alone is a very strong predictor. Bermingham and

Smeaton (2011) analysis of elections in Ireland also showed that the predictive power

of Twitter was not competitive with traditional polling methods. Metaxas et al. (2011)

suggests that methods claiming predictive power of elections on basis of Twitter data

should meet at least the following requirements:
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1. propose a clearly defined algorithm, e.g. formalize what constitutes a ‘vote’ (use all

the users? drop users with few tweets? drop users with a lot of tweets?)

2. take into account the demographic differences between Twitter and the actual

population

3. provide explainable predictions, i.e. black-box approaches ought to be avoided.

Stock market prediction and political forecasting have been widely studied and are

known to be inherently difficult problems. These types of applications raise a host of

additional problems having to do with complexity and uncertainty of these domains

(this will be elaborated in Section 2.1.3). It does not seem reasonable that social media

alone can directly and consistently predict such complicated and non-linear processes.

Therefore, this research will be mostly concerned with applications using social media to

‘predict the present’, that is, as a lens to better understand current states of affairs.

2.1.2 Predicting the Present

Social media analysis has also been used to investigate specific events both in real-

time and in retrospective, e.g. to monitor the public reactions to televised political

debates (Shamma et al., 2009; Diakopoulos and Shamma, 2010), gage the opinions

about social policies and reforms (Speriosu et al., 2011) and manage crisis-response

efforts in real-time (Nagy and Stamberger, 2012; Mandel et al., 2012). Other works

entail extracting continuous indicators from social media as a proxy for other real-world

phenomena, e.g. Bollen et al. (2011a) found correlations between the public mood (as

measured by an emotion lexicon), and various socio-economic trends; and O’Connor et al.

(2010) correlated measures of social media sentiment with economic confidence and

presidential approval rates estimated by traditional polls. Along these lines, Dodds et al.

(2011) deployed the Hedonometer1, a system that uses a happiness lexicon to compute

daily measures of happiness from social media and align those measurements with

relevant worldly events. Mitchell et al. (2013) used a similar methodology to connect

happiness levels per geographic region (using geo-located tweets) with socio-demographic

characteristics of those places.

There is also a growing body of work on using social media to investigate aspects

related to personal health and well-being (McCaughey et al., 2014; Coppersmith et al.,

2017). For example, it has been shown that signals from social media correlate with
1http://hedonometer.org/index.html
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mental-health status, suggesting that these data could potentially be used to help prevent

and diagnose mental illnesses such as depression (Hao et al., 2013; Schwartz et al., 2014;

Coppersmith et al., 2014a), post-traumatic stress disorder (Coppersmith et al., 2014b),

attention deficit disorder (Coppersmith et al., 2015a), and suicidal ideation (De Choud-

hury et al., 2016), among others. A related line of research has been looking at using

social media tool to improve public health practices (Salathe et al., 2012; Dredze, 2012).

For example, Paul and Dredze (2011) used Twitter data to track illnesses over time and

location, measure behavioral risk factors and medication usage; and others sought to

understand public perception about vaccines (Dredze et al., 2016b,a; Huang et al., 2017).

These methods have also shown great promise for epidemics surveillance (Culotta, 2010;

Broniatowski et al., 2013) and pandemics prediction (Ritterman et al., 2009). See J. Paul

and Dredze (2017) for a thorough review of social media analysis applied to public health.

2.1.3 How Not to Make Predictions from Social Media

Using social media to build models that make predictions about the world is certainly an

appealing idea. Such models must necessarily make simplifications about the phenomena

they try to capture, however complicated problems should not be oversimplified. Gayo-

Avello (2013) presented a comprehensive meta-analysis of electoral prediction methods

based on Twitter data. In it, the author voices the same concerns discussed in Section

2.1.1 and presents core research challenges that need to be addressed to make accurate

prediction of elections feasible. I argue that some of these concerns and challenges

also apply to other domains and applications aiming to leverage social media analysis

to investigate human-related issues. This section reiterates and comments on these

challenges.

• Demographic Biases: Social media is not a representative and unbiased sample

of the voting population — some strata are underrepresented while others are

overrepresented (e.g. urban young adults). These biases should be acknowledged

and predictions corrected on its basis. Similar strategies have already proven

to be effective for online surveys, which can have comparable validity to other

survey modalities simply by controlling for basic demographic features such as

the location, age, ethnicity and gender (Duffy et al., 2005). While demographic

information might not be available on social media platforms there is a growing

body of work on methods to infer demographic traits from social media data (Cesare

et al., 2017).
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• Self-selection Biases: A minority of users are responsible for most of the politi-

cal chatter and, thus, their opinions will drive what can be predicted from social

media (Mustafaraj et al., 2011). Generally speaking, inferences drawn from social

media will tend to overemphasize the concerns and views of the members that are

most actively engaged. Therefore, SMA systems should ensure that data collection

methods include samples from the long tail of less vocal users. This is particularly

relevant for controversial issues, given that social networks often exacerbate ho-

mophily effects and foster ‘echo chambers’ of highly polarized views (Conover et al.,

2011; Colleoni et al., 2014).

• Credibility: A substantial amount of social media data is not trustworthy and

should be automatically discarded (Castillo et al., 2011). Recent research also points

to the rise of sock puppet accounts to spread propaganda and misinformation, which

already had a concrete impact in recent democratic processes (Bessi and Ferrara,

2016; Ferrara, 2017). Some work has been done on methods to measure data

credibility, e.g. the Truthy system proposed by Ratkiewicz et al. (2011) to detect

astroturf in political campaigns to discredit, or to simulate widespread support for

a candidate.

• Näive Models: The use of simplistic sentiment analysis methods for complex and

ambiguous data should be avoided. For example, political discourse is plagued with

humor, double meanings and sarcasm, thus models should be robust enough to deal

with this type of communication. Therefore, efforts should be devoted to methods

for the particular case of sentiment analysis of political content and other such

domains.

2.1.4 Social Media Analysis Methodologies

Conducting social media analyses always involves at least three steps: (i) data collection;

(ii) inference over the data (iii) data analysis. In practice, studies are usually opera-

tionalized with one of the following methodologies: Manual Analysis, Automated Generic

Analyses and Automated Tailored Analyses.

Manual Analysis

Manual analysis of the data by researchers, akin to the traditional research methods in

the social sciences. This entails collecting a dataset about an issue and manually coding
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it with respect to the targets of analysis. For example, Carvalho et al. (2011) analyzed

how users expressed opinions about a political debate in the comments section of an

online newspaper; Tjong Kim Sang and Bos (2012) measured the sentiment expressed

in tweets mentioning political candidates to the Dutch senate; and Ayers et al. (2017)

used Twitter to investigate the reasons for the popularity of electronic cigarettes. This

approach allows researchers to engage closely with the data and uncover underlying

patterns, but it also suffers from the same limitations of traditional surveillance methods

— i.e., it is restricted to relatively small datasets, it is laborious and time-consuming.

Automated Generic Analyses

Leveraging automated methods but with little or no manual inspection of the data and

without tailoring the analysis to the specifics of the situation (Tumasjan et al., 2010;

O’Connor et al., 2010; Mitchell et al., 2013). This involves applying some off-the-shelf

method as a ‘blackbox’ (e.g. a general sentiment lexicon) to a dataset or data stream,

and then aligning the results with observed real-world events. For example, counting

the mentions to politicians in social media to predict election results intentions or

correlating sentiment measures obtained with a generic sentiment lexicon with public

opinion polls. These methods can often capture general trends but are also limited in that

generic models and resources are unable to cope with the nuances of particular domains.

Therefore, this methodology should not be used for detailed analyses over complex and

nuanced data.

Automated Tailored Analyses

Approaches that employ automatic data analysis with tailored methods, e.g. bespoke ma-

chine learning models designed for the task (Bermingham and Smeaton, 2011; Marchetti-

Bowick and Chambers, 2012). The output of the models is then aggregated and inter-

preted by subject matter experts to draw insights and conclusions about the observations.

Developing the models involves manual data inspection and annotation efforts, and can

also require additional research and development efforts to improve model performance.

This is the process that involves the most manual efforts, but it is also the one that

best exploits the full potential of social media as source of knowledge about the world.

However, this methodology still faces various limitations that prevent the widespread

adoption of SMA as a reliable instrument. This work aims to improve this methodology

by addressing some of the most critical of those limitations.
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2.1.5 Challenges of Processing Social Media

Social media analysis models (SMA) are usually operationalized with NLP methods and

techniques. However, the characteristics of social media pose significant challenges to

traditional methods that were developed for more conventional types of text. The main

challenges of processing social media are the following:

• noise: social media tends to be noisy, due to the prevalence of web slang, typos

and unconventional word spellings;

• brevity: posts are very short, thus providing little context to appreciate the mean-

ing of some utterances;

• ambiguity: social media serves various purposes and is often used to express sub-

jective views on different topics and issues. Subjective content is more ambiguous

than factual assertions and thus more difficult to process automatically.

Therefore, lexicon-based models require more comprehensive lexicons to account for typos

and alternative word spellings. Standard text classifiers also require larger vocabularies

to keep track of all the lexical diversity, which generates very high-dimensional feature

vectors. This in turn, yields more complex models (in terms of free parameters) which

require more labeled data to be properly trained. Another pitfall of dealing with noisy

text is the propensity to a large number of out-of-vocabulary words, i.e. tokens that were

not seen during model training but do occur at inference time, which further degrades the

performance. Moreover, bag-of-word models represent each word as a different symbol,

hence they cannot learn that some similar words refer to the same concept (e.g. the

words ‘coool’,‘c00l’ and ‘cool’).

Several approaches have been proposed to deal with token diversity by explicitly

reducing the vocabulary size. These range from simple pre-processing heuristics such

as clustering non-informative tokens into unique symbols (e.g. replacing URLs with the

token URL) to more sophisticated approaches that try to normalize the text via stemming,

spell-checkers (Han et al., 2013), dictionaries to expand abbreviations (Kouloumpis et al.,

2011), or discarding the less discriminative tokens with feature selection techniques (Pak

and Paroubek, 2010). However, these approaches are often too brittle and can end up

compromising the model’s generalization, as some of the discarded words may appear

at inference time — this is especially problematic given the brevity of social media

posts. The brevity of the messages also implies that most words will not occur in a

given post; as such, the resulting feature vectors tend to be rather sparse, thus carrying
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a weak signal. This causes additional problems to generic models, which need to be

augmented with additional information about the content and context of a post usually

via task-specific, manually crafted features. Finding and implementing the appropriate

set of features involve a laborious and time-consuming process. Moreover, some of these

features might depend on external tools (e.g. a POS tagger) which are may not available

for most languages other than English. This makes it particularly difficult to deploy

these systems for low-resource languages.

2.2 Modelling Subjective Language

One of the primary goals of this thesis is building computational models for the analysis

of opinions, emotions and reactions expressed in social media. Emotions, opinions and

sentiment are all related but distinct concepts — a sentiment is an attitude or thought

prompted by a feeling, whereas an opinion, is a judgment or appraisal about something.

Emotions are harder to define precisely because it is a complex human aspect that has

been studied from multiple perspectives (e.g. neurological, psychological, sociological and

philosophical). However, in everyday life we usually refer to emotions as our subjective

thoughts and feelings (Liu, 2012). One common characteristic of these types of expression

is that they are subjective, that is, referring to internal states that are not open to
observation or verification (Pang and Lee, 2008).

Unlike objective expressions, i.e. factual assertions about the world, subjective lan-

guage has an added degree of ambiguity which makes it more challenging to process

automatically. Note however that these differences are often subtle, and not consensual

amongst researchers and practitioners, e.g. objective statements can also imply senti-

ment if they refer to desirable or desirable facts. Nevertheless, for our purposes, we can

abstract these nuances by treating all these problems as prediction tasks. More precisely,

we are concerned with approaches to build models

(2.1) ŷ= fθ(φ(d))

that given a document d = {w1, . . . ,wN } composed of words w, predict a numeric response

ŷ ∈ R or a category ŷ ∈ Y , corresponding to some high-level aspect of the document.

For example, a sentiment analysis model takes in d and tries to predict the sentiment

polarity ŷ ∈Y = {positive, neutral, negative} expressed in d. These models operate

over formal representations of the input φ(d) and are characterized by a set of parameters
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θ that encode some form of linguistic or domain knowledge that informs the mapping

between inputs and outputs.

Language is a complex human phenomenon, in which sequences of discrete symbols

(i.e., words) are used to communicate and reason about anything from concrete and

tangible objects to abstract ideas. If we tried to explicitly encode all the ways in which

words can be combined and influence each other to convey meaning, the resulting models

would be cumbersome, and difficult to estimate and interpret. Therefore, in practice, our

choices for fθ(·) will always involve simplifying assumptions to derive models that are

useful and tractable. The main choices for building predictive models for subjective NLP

tasks are either lexicon-based or supervised machine learning approaches. The former,

are informed by labeled lexicons and operationalize the mapping via a set of manually

specified rules and heuristics. The latter, requires a set of manually labeled training

examples to learn a discriminative function that given a new document d predicts the

corresponding label y. Note that both types of models are parametrized by θ which

depends on some form of supervision. Indeed, recent work has shown that under certain

conditions these approaches are equivalent, specifically, lexicon-based classifiers are a

special case of Näive Bayes classifiers (Eisenstein, 2017). An important distinction is

that lexicon-based models depend on word-level annotations, whereas supervised models

require document-level annotations.

2.2.1 Lexicon-Based Models

Lexicons are dictionaries mapping pre-specified keywords to prior semantic annotations

(e.g. sentiment). These dictionaries can be used to inform algorithms that extract specific

signals from the text with basis on the presence of these keywords (usually disregarding

the context). For example, one can infer the overall sentiment of a document by looking

at the proportion of words from lists of positive and negative words (Pang et al., 2002).

Assuming we have a lexicon L : w ∈V →R ∈ [−1;1] associating sentiment polarity scores

to a set of words V , we can make predictions by aggregating the sentiment scores of

individual words and use a threshold t to decide on the output label. More formally, given

a post d = {w1, . . . ,wn} with n words, the overall sentiment polarity is inferred as:

ŷ=
positive, if sentiment(d)> t

negative, if sentiment(d)< t
(2.2)

sentiment(d)= 1
n

∑
wi∈d

L(wi)

23



CHAPTER 2. BACKGROUND AND PRELIMINARIES

These models are very popular due to their simplicity, ease of implementation, and

interpretability. For domain experts, creating these word lists is intuitive, and provides a

quick way to build a reasonably accurate classifier. If the performance is unsatisfactory

the models can be easily debugged and iteratively improved by refining the lexicons.

However, relying on the semantics of (a few) words devoid from context is obviously

far from sufficient to capture the subtleties and nuances of subjective language. Consider

the sentence: is he a good candidate? — despite containing a ‘positive’ word, it does

not convey any sentiment. On the other hand, the intended meaning of a word strongly

depends on the context, e.g. scary might be a positive aspect of a movie or negative trait

of a person. Furthermore, words can have different connotations in different domains and

communities (Silva et al., 2012; Hamilton et al., 2016) — e.g., the expression he is so sick,

can be referring to an ill person or a great person2. This implies that specific analyses

should be carried out with lexicons tailored for the task and domain of application.

2.2.1.1 Lexicon Induction

Another major challenge of building lexicon-based models is in obtaining high quality and

comprehensive lexicons. These resources are usually created manually by linguists or

subject matter experts who must, first, choose a collection of relevant terms; and second,

provide judgments for the terms either themselves, or collect these judgments through

annotation campaigns. This process can become rather expensive and time-consuming

and thus manually crafted lexicons are usually incomplete. This is particularly prob-

lematic for applications over user generated content which often contains abbreviations,

misspellings and other orthographic variations. Recently, researchers have begun explor-

ing crowdsourcing approaches to create much larger lexicons at lower costs (Mohammad

and Turney, 2013; Warriner et al., 2013) but these approaches can only go so far. For

example, reliable crowdsourcing services are not available in every country, and it is

not reasonable to ask annotators to assign labels to all spelling variations of a word.

Furthermore, it might not be easy to crowdsource tasks that require highly specialized

domain knowledge, thus these methods are more suited for general and intuitive proper-

ties. Therefore, in order to be effective, lexicon-based SMA methods require strategies to

automatically induce large-scale lexicons at low-costs.

The automatic extraction of lexicons is a well-known and widely studied problem,

with most proposed solutions being predicated on the idea that similar words should

have similar labels. Proposed approaches differ essentially along two axes: first, in how
2https://www.urbandictionary.com/define.php?term=sick
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the word similarities are defined and measured; and second, how the label assignment is

operationalized, e.g. with heuristics (Kim and Hovy, 2006), supervised classifiers (Silva

et al., 2012) or graph-based label propagation algorithms (Baccianella et al., 2010;

Velikovich et al., 2010). Word similarity measures can be inferred from word relations,

such synonymy and antonymy as described in a manually curated knowledge base (Hu

and Liu, 2004; Rao and Ravichandran, 2009). However, these methods are limited in

that such knowledge bases are not available for most languages, and do not usually

encompass the informal language that is characteristic of social media. Alternatively, one

can leverage a data-driven approach and exploit statistics from corpora analysis. Context

is one strong indicator for word similarity, as related words tend to occur in similar

contexts (Firth, 1961). Therefore, word similarities can be inferred via information theory

metrics (Turney and Littman, 2003; Kiritchenko et al., 2014) and with methods based on

distributional similarities induced with Latent Semantic Analysis (Bestgen and Vincze,

2012) or neural word embeddings (Tang et al., 2014).

2.2.1.2 Sentiment Lexicon Expansion with Word Embeddings

Along these lines, we also developed a system based on word embeddings to participate

in SemEval Twitter sentiment lexicon induction shared task (Rosenthal et al., 2015).

The goal was to assign sentiment polarity labels between 0 and 1 to a set of words

and phrases collected from Twitter. Instead of computing word similarities directly, we

used Ling et al. (2015a) Structured Skip-Gram embeddings as features for a regression

model trained to predict the labels of a smaller lexicon (Amir et al., 2015). The model

consisted of a Support Vectors Machine (Vapnik, 2000) with a Radial Basis Function

kernel of the form k(xi,x j)= e(−γ|xi−x j |2) with γ > 0, where x denotes a feature vector.

Hence, it learns a linear function in the space induced by the kernel and the data, which

corresponds to a non-linear function in the original space. Despite the simplicity, this

approach produced the top-ranking submission of the competition.

2.2.2 Supervised Linear Classifiers

Lexicon-based models are often too simplistic and brittle to capture the nuances of

subjective expression. A more powerful modelling approach are machine learning meth-

ods that make predictions based on learned correlations between instances and target

responses. Generally speaking, this approach entails three steps: first, choosing a form

for the predictive model fθ(·); second, defining a representation for the input φ(·); and
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third, choosing a learning algorithm to estimate the parameters θ from training data.

The simplest and most popular choice for fθ(·) are linear models, which assume a linear

relationship between the observed instances (more precisely, a set of features describing

those instances) and the labels. This relationship is characterized by a set of parame-

ters θ = {w ∈Rk,b ∈R}, specifying the relative contribution of each feature to predict a

response.

The model makes predictions with a linear combination of the observed features and

parameters as

(2.3) ŷ= fθ(φ(d))=σ(w ·d+b)

where d ∈Rk is a feature vector describing document d and σ(·) is a convenience function

that transforms the model output into the desired response. This is an univariate model

but it can be easily extended to multi-class classification by learning (conditionally)

independent weight vectors w for each class, and constructing a weight matrix W ∈R|Y |×k

as

(2.4) W=


w1
...

w|Y |


In this case, the model produces a vector of estimates as

(2.5) ŷ=σ(W ·d+b)

where b ∈R|Y | is a bias vector. Then, if the goal is just classification, we can set σ(x)=
argmax

i
xi to return the index of the class with the highest score. To interpret the

univariate model predictions as a probability, the sigmoid function can be used to map

the output to a real number in the range [0;1]

(2.6) σ(x)= 1
1+ e−x

The generalization of sigmoid to k-class classification is known as the softmax function

(2.7) softmax(x)= ex∑|Y |
i exi

which induces a proper probability distribution over the outputs via exponentiation

(ensuring non-negative numbers) and normalization (ensuring that all values sum to

one). Thus, we can define a probabilistic classifier as

(2.8) Pθ(Ŷ |d)= softmax(W ·d+b)
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This is model usually referred as Logistic Regression or Maximum Entropy model.

The model can be trained with gradient based methods (e.g Gradient Descent) by

finding the parameters θ that minimize the inverse likelihood of the training data

θ←min
θ

− 1
|D|

|D|∑
i=0

logPθ(y(i)|d(i))(2.9)

where Pθ(y|d) is estimated with Eq. 2.8. However, this is general model which has

been rediscovered in many fields and thus it gives rise to various popular classifiers.

For example, the Näive Bayes classifier is also a linear model with but it follows a

generative approach and thus it is trained with Maximum-Likelihood Estimation. The

linear formulation of Support Vector Machines also corresponds to this model. The

difference is that the training procedure imposes additional constraints to ensure that

the classifiers learn the hyperplane that separates the classes with the largest possible

margin, thereby improving the robustness of the model (Cortes and Vapnik, 1995). See

Manning et al. (1999) for detailed explanations and derivations of these and other

classical NLP models.

2.2.2.1 Representations

The most common choice to represent words in NLP is using the one-hot encoding —

each word is represented as a vector with the size of the vocabulary, i.e. a dictionary

mapping all the known words to numeric indices, with zeros in all the positions and

the value 1 in the position corresponding to that word. However, this approach has

two inherent limitations. First, one-hot word vectors are all orthogonal to each other,

meaning that every word is treated as a different symbol unrelated to every other word.

This means that the models cannot generalize to unseen words even if they are similar

to other known words (e.g. hotel and hotels refer to the same concept but are represented

with two distinct symbols). Second, the size of the vectors is proportional to the size

of the vocabulary, implying that (for linear models) the complexity scales linearly with

vocabulary size. This means that models operating over large vocabularies have a large

number of parameters, thus requiring a large number of training examples be estimated

without overfitting — this is a problem known as the curse of dimensionality.

Documents can be represented by summing the one-hot vector representations of

individual words to obtain a vector φ(d)=d ∈ {0,1}|V |, where V is the vocabulary. This is

known as a bag-of-words model (BOW) and treats documents as unordered collections of

words. Despite the success of BOW models in several text analysis applications (e.g. spam
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filtering and topic detection), completely disregarding word order information gives only

a crude approximation of the contents of a document. Furthermore, in tasks such topic

classification the presence of certain words is very indicative of the class e.g. a document

about sports contain very specific words that are unlikely to appear in a document about,

say politics. However, that is not case for inferences over subjective text, due to the

inherent ambiguities and subtleties, e.g. ‘positive words’ can be used to convey negative

judgments. Thus, many applications rely on additional features (i.e., characteristics)

of the document that better capture its semantics. The process of manually designing

features, usually referred as feature engineering, is highly dependent on the task and data

at hand, and often requires significant domain expertise, ingenuity and experimentation.

2.2.3 Low Resource Learning

The success of supervised systems largely depends on the amount and quality of the

available training data, oftentimes, even more than the particular choice of learning

algorithm (Banko and Brill, 2001). However, creating high-quality manually labeled

datasets for supervised systems is an expensive and time-consuming endeavor, which

motivated the research in techniques to learn models in low-resource settings. These

include complementing small datasets with other sources of supervision, such as: transfer
learning methods to re-use labeled data from some other task/domain to build models for

applications with scarce resources (Pan and Yang, 2010); and semi-supervised learning
methods to combine large amounts of unlabeled data with few labeled instances to induce

better models (Zhu, 2005). However, these methods assume that the out-of-domain data

has some similarities with the target data, which is difficult to guarantee and not trivial

to even ascertain. An alternative are unsupervised feature learning methods that exploit

large volumes of unlabeled data to infer correlations, statistical regularities and other

underlying patterns and learn high-level representations of the input (Ghahramani,

2004; Bengio et al., 2013). For example, one can learn word features by exploiting the fact

that related words tend to occur in similar contexts (Firth, 1961). Approaches that are

based on this concept include, Latent Semantic Analysis, where words are represented

as rows in the low rank approximation of a term co-occurrence matrix (Deerwester

et al., 1990) and word clusters obtained with hierarchical clustering algorithms based

on Hidden Markov Models (Brown et al., 1992). In the next section, we discuss another

approach based on this idea, consisting of learning continuous word vectors via neural

language models.

For the extreme case where there are no labeled resources available, researchers

28



2.2. MODELLING SUBJECTIVE LANGUAGE

have resorted to distant supervision to obtain large labeled datasets for ‘free’. The idea is

to leverage simple heuristics (e.g. the presence of specific words or meta-data attributes)

to automatically assign noisy (i.e. imperfect) annotations to unlabeled data. Despite

the low-quality of the annotations, this approach has been used to amass large labeled

datasets for various tasks over Twitter data, e.g. sentiment analysis (Go et al., 2009), fine-

grained emotion classification (Purver and Battersby, 2012), sarcasm detection (Bamman

and Smith, 2015), and mental-health inference (Coppersmith et al., 2015b). Part of the

research work presented in this thesis was conducted on datasets obtained in this

fashion.

2.2.4 Applications

2.2.4.1 Twitter Sentiment Analysis

In recent years, the topic of sentiment analysis over user generated content has received

significant attention from researchers, due to the wide range of applications. Indeed,

Twitter sentiment analysis has become a research field in its own right and was pop-

ularized by international shared tasks such as SemEval (Nakov et al., 2013). As such,

several variations of this task have been addressed in the literature (e.g. aspect-based

sentiment analysis and opinion mining) — the main concepts and related tasks have

already been thoroughly reviewed and summarized elsewhere (Pang and Lee, 2008;

Liu, 2012, 2015). Hence, here we will briefly review supervised methods proposed for

the general sentiment analysis task, as defined by SemEval, i.e. judging if a document

expresses an overall positive, neutral or negative sentiment polarity.

Predicting the sentiment expressed in text is fundamentally a text classification task,

thus the obvious choice are representations based on n-grams — Go et al. (2009) were

the first to report on experiments with supervised classifiers for this task, using features

based on unigrams and bigrams. A substantial amount of work has also been done

in improving message representations with more sophisticated lexical features based

on Part-of-Speech tags (Barbosa and Feng, 2010), disambiguated word senses (Miura

et al., 2014), linguistic cues captured with morphological and syntactic patterns (Davidov

et al., 2010a) and tree kernels (Agarwal et al., 2011). Kouloumpis et al. (2011) tried

to take into account the informal style of social media with features based on the

presence of hashtags, excessive punctuation, emoticons and word casing. Others have

proposed methods that try to explicitly capture the nuance of sentiment classification,

e.g. Paltoglou and Thelwall (2010) compared different feature weighting schemes (e.g.
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binary, term frequency) and found that weighting schemes used in Information Retrieval

to be more effective for sentiment analysis; and Kiritchenko et al. (2014) proposed a set

of sophisticated features based on five sentiment lexicons. Most of the top performing

systems that participated on the first editions of SemEval competition consisted of linear

models based on the aforementioned features. The results of these competitions showed

that simple BOW models perform very poorly, and that the most predictive features are

the ones derived from sentiment lexicons, particularly when extracted from lexicons

tailored for the social web.

Exploiting Unlabeled Data for Twitter Sentiment Analysis

In preliminary work of this thesis, we also developed Twitter sentiment analysis models

to participate on international shared task competitions. The goal was to investigate

methods to exploit unlabeled data and reduce the sparsity of the feature vectors. We

experimented with compact document representations obtained with Concise Semantic

Analysis (Li et al., 2011) and by mapping words into dense word vectors obtained with

Brown word clusters (Brown et al., 1992) and Skip-Gram word embeddings (Mikolov

et al., 2013a). The word clusters and embeddings provide a general way to include

unlabeled data into the model. The lexical representations were then complemented with

features extracted from multiple sentiment lexicon, as described by Kiritchenko et al.

(2014). Some of the lexicons were automatically extracted and thus providing another

mechanism to improve the model with unlabeled data. This approach allowed us to build

a state-of-the-art system which ranked amongst the top submissions in two international

shared tasks: RepLab Polarity for Reputation Classification task (Filgueiras and Amir,

2013) and SemEval’s Twitter Sentiment Analysis (Amir et al., 2014).

2.2.4.2 Sarcasm Detection

Social media users often resort to humor and figurative language, such as irony and

sarcasm, to express their views on complex issues (Carvalho et al., 2009). Like other

figurative devices, irony and sarcasm are difficult to define precisely, but verbal irony

is commonly defined as the rhetorical process of deliberately saying something, while

trying to convey the opposite meaning of what is being said (Colston and Gibbs, 2007) —

sarcasm can be viewed as a special case of irony, where the positive literal meaning is

perceived as an indirect insult (Dews et al., 1995).

Early approaches to detect the use of figurative language in text used features similar

to those used in sentiment analysis. Carvalho et al. (2009) analyzed comments posted
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by users on a Portuguese online newspaper and found that oral and gestural cues,

such as emoticons, onomatopoeic expressions for laughter, heavy punctuation marks,

quotation marks and positive interjections are indicative of irony. Others used features

based on word and character n-grams, sentiment lexicons, surface patterns and textual

markers (Davidov et al., 2010b; González-Ibáñez et al., 2011; Reyes et al., 2013; Lukin

and Walker, 2013). Some work has also been done on features to capture specific patterns

that are suggestive of ironic intent, such as the expression of contrasting sentiments in

the same utterance, the presence of ambiguous words or co-occurrence of frequent and

rare tokens (Riloff et al., 2013; Barbieri and Saggion, 2014).

Modelling Context

However, all the aforementioned approaches rely predominantly on features intrinsic
to texts — and yet, lexical clues alone are often insufficient to discern ironic intent.

Appreciating the context of utterances is critical for this; even for humans (Wallace et al.,

2014). Therefore, recent work has been focused on augmenting lexical representations

with features to capture contextual information, e.g. Wallace et al. (2015) exploited

the expected biases of certain communities (e.g., people tend talk favorably about the

politicians they support and unfavorably otherwise); Khattri et al. (2015) extended the

notion of contrasting sentiments beyond the textual content at hand. In particular, they

analyzed previous posts to estimate the author’s prior sentiment towards specific targets
(i.e., entities). A tweet is then predicted to be sarcastic if it expresses a sentiment about

an entity that contradicts the author’s (estimated) prior sentiment regarding the same.

Bamman and Smith (2015) investigated a rich set of features to capture information

about the interactions between author and the audience of a post; and Rajadesingan et al.

(2015) operationalized theories of sarcasm expression from psychology and behavioral

sciences to model a range of behavioral aspects of the author of a post (e.g. mood and

writing style). The major downside of these and related approaches, are that they often

rely on platform specific information and demand significant manual effort to collect

additional data and derive the adequate feature sets.
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2.3 Neural Networks for Natural Language
Processing

As we have seen in the previous section, the process of designing features is very

dependent on the task at hand and relies heavily on domain knowledge. Moreover,

there is no principled or systematic way to discover such features and hence feature

engineering is usually a trial and error process. Artificial neural networks can alleviate

this process by incorporating the feature extraction process into the model. The model

is then trained to map inputs into the desired outputs and also how to best represent

those inputs for the prediction task. In other words, the feature extraction function φ(x)

will also be learned from data, thus obviating the need to manually devise task-specific

representations. Neural networks are thus defined as a composition of feature extraction

functions and a prediction function — these functions are also known as layers. The two

main types of neural models are: (i) feedforward neural networks, which take as input a

fixed sized vector, perform a sequence of computations and outputs a single prediction

vector (Rosenblatt, 1961; Rumelhart et al., 1988); and (ii) recurrent neural networks
which operate sequentially over inputs of variable length (e.g. sentences). At each step,

an internal representation is formed based on the previous and current inputs, and a

local prediction can be made (Elman, 1990; Hochreiter and Schmidhuber, 1997).

2.3.1 The Multilayer Perceptron

The simplest possible feedforward neural network is the Perceptron (Rosenblatt, 1961),

which only has an input and output layer, and thus it is equivalent to the LR model (Eq.

2.8). The Multilayer Perceptron (MLP) extends the Perceptron by introducing a set of

hidden layers (i.e. feature extraction functions) in between the input and output layers

(2.10) P(Ŷ |x)= softmax(W ·φθn(. . .φθ1( φθ0(x) ) . . .)+b)

By training the MLP for a specific prediction task, the hidden layers learn to transform

the inputs into internal representations that are suited for that problem. These are

known as distributed representations because they describe each concept with multiple

features and each feature can be involved in describing multiple concepts (Hinton, 1986).

In this case individual features have no concrete meaning, unlike symbolic representa-

tions (e.g. the one-hot encoding) which associate each feature to only one concept. The

MLP defines the feature extraction function as an affine transformation followed by a
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pointwise non-linear function, such as the sigmoid (Eq. 2.6)

(2.11) φθ(x)=σ(H ·x+c)

Here, H ∈Rl× j and c ∈Rl are the weights and bias — note that this function is identical to

the Logistic Regression model. The non-linear transformation is often called an activation
function in the context of neural network models.

The MLP consists of a stack of LR layers, each of which takes the output of the

previous layer as input, transforms it, and passes it to the next layer — this is known

as forward pass. Another way to look at these models is as computational graphs

(specifically, a Directed Acyclic Graphs) wherein each layer consists of a set of nodes,

which are connected to the nodes in the next layer by a set of weighted edges, as depicted

in Figure 2.1. The choice of size and number of hidden layers is referred to as the

architecture of the network. In theory, given a large enough hidden layer, the MLP can

approximate any function (Cover, 1965). However, there are no guarantees that the

current learning algorithms are able to find the correct parameters in a reasonable

amount of time. Indeed, the main challenge of building neural networks is how to

efficiently estimate the parameters from data.

The MLP is as old as the Perceptron itself but it was not feasible for practical applica-

tions until Rumelhart et al. (1988) invented of the backpropagation algorithm. Rumelhart

et al. (1988) showed that it was possible to minimize the global error of the network

by minimizing the local errors of each layer, and proposed an algorithm to efficiently

estimates the error gradients with respect to all the network parameters. The idea was to

apply the chain rule of derivatives to the computational graph and leverage the fact the

quantities that are used to compute the gradients of the upper layers, can be reused to

compute the gradients on the lower layers — the errors are thus propagated backwards

trough the graph. Even though the backpropagation algorithm made it possible for

models to learn representations automatically, the hidden layers exponentially increase

the number of model parameters which makes the models more prone to overfit and

much slower to train. Moreover, the objective function that neural networks optimize is

no longer convex, hence gradient based solvers are not guaranteed to find the optimal

solution.

2.3.2 Deep Neural Networks

Neural networks with more than one hidden layer, are said to be deep. Researchers found

that for the same number of parameters, better results could be obtained by favoring
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Figure 2.1: Schematic depiction of the Multilayer Perceptron. Feedforward neural net-
works process information through a sequence of layers that transform the input x in
such way that a classifier can better predict the respective label y. Each layer consists
of a set of nodes (the ‘neurons’) that perform a non-linear operation (e.g. the sigmoid
function). The nodes on a given layer are connected to those of the succeeding layer by a
set of learned weights (the ‘synapses’) that are used to process the input with an affine
transformation.

‘tall’ architectures — i.e. with multiple small hidden layers — over ‘wide’ architectures,

i.e. with few large hidden layers. One of the reasons is that wide layers are so expressive

that they can simply memorize all the mappings that were seen during training. This

hampers the generalization of the models. In contrast, deep neural networks are able

to learn hierarchical representations, such that a concept can be described at different

levels of abstraction, each level building upon the representations from the previous

levels. A good example is image classification: in this case the lower layers learn to

detect basic patterns in an image, such as lines and edges; the layers above learn to

detect patterns of lines and edges to form basic shapes; and the top layers learn to

detect patterns of shapes to identify objects composed of those shapes (Lee et al., 2009).

Moreover, researchers noted that even though the optimization procedure could get

stuck in local minima, in practice the parameters that were learned were generally good

solutions for the problem (Lecun et al., 1998).

Another advantage of deep networks is that they can be built incrementally with

a technique known as layerwise pre-training (Hinton et al., 2006). We can start with

shallow network with just one hidden layer φθ1 and train the network until it converges.

Then, θ1 can be used to set the parameters of the first layer of a 2-layer network; θ1

is fixed and the model is trained again, thereby learning the parameters of the second

layer φθ2 . This process can then be repeated to build a very deep neural network, while
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estimating only a smaller number of parameters at each step. More recently, Eldan

and Shamir (2016) has formally shown that increasing depth adds exponentially more

‘value’ to the network than increasing width — e.g., there are limits to how well a 2-layer

feedforward network can approximate functions that can be easily expressed with a

3-layer network.

2.3.2.1 Structured Architectures

The layers of an MLP are fully connected, meaning that the neurons on a given layer

are connected to all the neurons on the succeeding layer (Figure 2.1). To reduce the

capacity of the networks researchers began to explore custom architectures that exploited

the characteristics of specific tasks or simplifying assumptions to reduce the number

connections and to share some of the weights. For example, using symmetric weights

for the input and output connections of a layer (Hinton and Salakhutdinov, 2006).

Recurrent Neural Networks, exploit the temporal structure of sequential data to inform

the architecture. In this case, the network uses a fixed sized feature extractor that slides

through the input; at each step, the network extracts local features and computes an

internal state that represents the sequence up to that point. This can also be viewed as a

special case of a feedforward neural network where each layer has the same weights.

Another example are Convolutional Neural Networks (CNN), which were initially

proposed for the task of optical character recognition by Lecun et al. (1998). One challenge

of image recognition in general, is ensuring that models are invariant to shift, scale

and distortion, e.g. a cat should be recognized whether it appears in the center of

the image or in a corner. This usually requires non-trivial preprocessing and heavily

engineered features to account for those variations. CNNs address this problem with

three architectural ideas:

• Local Receptive Fields: Variables that are spatially and temporally nearby are

highly correlated, e.g. the pixels that form or a line or the words that form a phrase.

Therefore, the feature extractors (also known as filters) act on fixed size patches

of the input and ‘slide’ across the data to extract local features, which form a

feature map. These local features are then combined by the upper layers to detect

higher-order features.

• Subsampling: Once a feature is detected only the relative position with respect to

other features is important (not its exact location). Therefore, the aforementioned

feature map is passed to a sub-sampling layer that performs local averaging and
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sub-sampling to reduce the resolution of the map, thereby reducing the sensitivity

of the output to shifts and distortions.

• Shared weights: By training, each feature extractor becomes sensitive to specific

patterns (e.g. edge detectors) but the same patterns can occur at different points in

space, thus by re-using the same weights across the input the model ensures shift

invariance. A target pattern will be detected regardless of its position on the input.

A convolutional layer is thus composed of a set of filters so that multiple features

can be extracted from the same location. A CNN is created by stacking a set of these

convolutional layers and sub-sampling layers and then adding a stack of fully connected

layers on top. The former extract rich image representations and the latter further

transform the representations and computes predictions. The state-of-the-art models

for computer vision that achieve super human performance are based on these same

principles (Krizhevsky et al., 2012; He et al., 2016). In recent years, CNN models have

also showed excellent results for natural language processing tasks (Collobert et al.,

2011; Kim, 2014; Kalchbrenner et al., 2014). Chapter 5 provides a formal definition of a

CNN for text classification.

The most recent developments in deep learning were enabled in part by the avail-

ability of more powerful hardware and larger training datasets. But also due to a better

understanding of the impact of the activation functions on learning (e.g. vanishing and

exploding gradients), which lead to a host of new such functions; and the use of regu-

larization techniques, both the classical techniques from statistical learning (e.g. norm

based regularizers) to methods specific to neural networks such as Dropout (Srivastava

et al., 2014). These factors allowed practitioners to train very deep neural networks

without overfitting the data.

Deep neural networks are able to learn models for many non-trivial prediction tasks

which, despite using little explicit human intervention, outperform well established

baselines and in some cases even human themselves. These remarkable results may

give the impression that these models just work out-of-the-box for any problem, but in

practice that is not the case. Building neural models requires not only much more labeled

data but also involves choosing amongst a myriad of possible neural architectures and a

huge configuration space. This choice depends on factors such as the amount and quality

of the available data; the task difficulty — e.g. predicting the topic of document is easier

than inferring emotional tone or sarcastic intent; and the task complexity, as measured

by the size of the response space (i.e. the number of labels). Broadly speaking, more
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difficult or complex tasks tend to require more complex architectures (i.e. with more

parameters), which in turn require more training data.

2.3.3 Neural Language Models

One of the first successful large-scale applications of deep learning to NLP tasks was a

probabilistic model for the task of language modeling. Language models aim to predict the

probability of a sentence, i.e. the likelihood that a sequence of words forms a plausible

sentence. These models are a core component for many downstream NLP tasks, e.g.

knowing the probability of sentence can be used to reject ungrammatical sentences

produced by machine translation or speech recognition systems. The main limitation of

linear models used for this task was the difficulty to represent long sequences, due to

sparsity and the aforementioned curse of dimensionality problem. Bengio et al. (2003)

proposed to address this problem with a deep neural network trained to predict the

occurrence of a word given a context of preceding words. The high-dimensional sparse

vectors were first embedded in a lower dimensional dense space (i.e. the first hidden

layer) allowing words to be represented as continuous vectors. N-grams could then be

represented by aggregating individual word representations into a fixed sized vector,

which was the input to a classifier that tried to predict the probability of the next word.

Bengio et al. noted that, after training, the internal representations learned by the word

embedding layer captured relevant latent aspects of words. Moreover, ‘similar’ words

were associated to similar representations which allowed the model to generalize to

variations of the same words or to related words that were not seen during training. Later

work showed that these word vectors could be used as features to improve state-of-the-art

models for various NLP tasks (Turian et al., 2010) and to initialize the parameters of

downstream neural networks (Collobert et al., 2011). Even though this approach did not

outperform the state-of-the-art model of at the time, this work was highly influential and

spawned significant research on neural language models as a general way to learn word

representations — also known as word embeddings.

2.3.4 Learning Word Embeddings

Harris (1954) hypothesis that the meaning of a word is a function of the contexts of

other words where it occurs, has given rise to several successful computational linguistic

models (e.g., Latent Semantic Analysis (Dumais et al., 1988) and Brown et al. (1992)

word clustering algorithm). This is known as the distributional hypothesis and it is best
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known by the aphorism you shall know a word by the company it keeps (Firth, 1961).

Neural language models are the latest operationalization of this idea and thus the word

embeddings they produce are able to capture semantic and syntactic properties of words.

The task of predicting the occurrence of words, given their contexts, requires models

to have a basic understanding of syntax, e.g. to correctly predict the missing word x
in the sentence ‘you shall x a word by the company it keeps’, the model needs to know

that, in this context, x is probably a verb. By learning statistical correlations between

words and the contexts where they occur, the models also capture latent semantics

(in the distributional sense). From a machine learning standpoint, we have that word

vectors that are used to predict the same words (i.e. that occur in the same contexts)

will converge to similar solutions. As a result, similar words end up having similar

representations which helps to improve model generalization.

The main problem of Bengio et al. (2003) neural model was that it was computation-

ally expensive and thus could not be trained with very large datasets or vocabularies.

Hence, various methods have been proposed to improve the scalability e.g. by approxi-

mating the training objective with simpler functions (Morin and Bengio, 2005; Mnih and

Hinton, 2009); others have abandoned the goal of learning a language model, instead

focusing on learning the word vectors directly (Collobert et al., 2011). This shift opened

the door to more efficient, discriminative learning algorithms and simpler neural archi-

tectures, in turn allowing models to be trained with much larger datasets. Indeed, the

state-of-the-art neural word embedding models do not have hidden layers essentially

corresponding to linear models trained on word prediction tasks (Mikolov et al., 2013a;

Pennington et al., 2014). Nevertheless, the general approach remains the same: associ-

ating words with parameter vectors, which are then optimized to predict other words

that occur in the same contexts. The widely popular SKIP-GRAM model (Mikolov et al.,

2013a), operationalizes this approach by sliding a window of a pre-specified size across

an unlabeled corpus; at each step, the center word is used to predict the probability of

one of the surrounding words as

P(y= dc|d)∝ exp(Wc ·E ·d)(2.12)

where d is a one-hot vector for word w, E ∈Re×|V | correspond to the embedding matrix,

transforming sparse word vectors into a dense real valued space of size e, and W ∈R|V |×e

is an output matrix projecting the dense representation to a vector with the size of the

vocabulary. This approach was later expanded to learn representations for paragraphs

(or, more generally, sequences of words), by trying to predict the center word of the
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sliding window, given the surrounding words and the paragraph (i.e., their respective

vectors) (Le and Mikolov, 2014).

2.4 Building Social Media Analysis Pipelines

We now turn our attention to the methodological aspects of deploying social media

analysis applications in the real world. Building these systems is essentially a software

engineering endeavor wherein the goal is to produce a computational artifact to fulfill

some business need or a set of requirements. As such, the specific methods and practices

are largely influenced by factors such as the organization structure (e.g. small indepen-

dent teams vs large hierarchical organizations), budget and expected outcomes (e.g., a

bespoke pipeline for exploratory analyses or a monitor for longitudinal studies), among

others. A key difference, however, is that typical software engineering projects aim to

produce a piece of software, whereas SMA applications aim to produce new knowledge

and insights; the developed software is just a means to attain that goal. Moreover, SMA

projects are usually multidisciplinary, involving subject matter experts (SME), computer

scientists and data scientists; and have a strong R&D component requiring experimen-

tation and analysis throughout the process — even formulating the exact question to

be addressed usually requires exploration and preliminary analyses (Wibberley et al.,

2013). Nevertheless, there is a common process and a set of high-level activities that

govern any such endeavor, namely:

1. Requirements Analysis

2. Data Collection

3. Data Annotation

4. Model Development

5. Data Analysis

6. Validation and Interpretation

These activities tend to have a sequential dependency, i.e. each step depends on

deliverables from the previous activities and, at the same time, the feedback from each

step can be used to further refine and improve the preceding activities. This naturally

suggests a spiral development process, where each step is revisited and refined with

basis on the evaluation of the previous version of the system or specific components
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thereof, as illustrated in Figure 2.2. It is worth noting that within this process there are

often closed loops between adjacent activities, for example, the requirements analysis
and data collection steps provide immediate feedback to each other, in that the latter is

informed by keywords specified in the former; on the other hand, inspecting the data

might show that the search terms are too broad or ambiguous. Similarly, the model
development and data annotation steps are closely tied, as are the data analysis, and

validation and interpretation steps. See tables 2.1 , 2.2 and 2.3 for further details on

these activities including the main roles, goals, validation strategies, inputs and outputs.

Figure 2.2: Diagram of the high-level process of building social media analysis pipelines
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REQUIREMENTS ANALYSIS
Roles Client, Subject Matter Expert and Computer Scientists

Goals Formalize the business/information needs, questions or hypotheses driving
the project, which must be scoped and translated into concrete pipeline
components. A critical part of this step is specifying how should the system
be validated. Even though each pipeline component will be subjected to
some form of evaluation, it is crucial to have a criterion to validate the
final output the whole system. The decisions and deliverables produced
in this step directly inform all the subsequent activities, e.g. the relevant
data sources, analytics and the intended outputs.

Output Data sources, search terms and filters for the data collection, the labels or
responses to be measured, the indicators to be produced, and the systems
validation metrics.

DATA COLLECTION
Roles Computer Scientist

Goals Define methods for data retrieval (e.g. web scrappers, database clients or
web API consumers) and storage, taking into account the goals and scale
of the project, and factors such as the privacy and sensitivity of the data
(e.g. anonymization might be required).

Validation Manually exploring the data to get a better sense of the signals that are
present. This step might reveal that the current search terms are too
broad or too restrictive, thus prompting a revision of the requirements.

Input Search keywords and filters

Output Raw data samples.

Table 2.1: Requirements Analysis and Data Collection tasks
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DATA ANNOTATION
Roles Subject Matter Expert and Data Annotators

Goals Produce annotations for words, phrases, documents or users that are
representative of the task at hand. This entails defining guidelines and
policies to ensure that all the data is annotated in a meaningful and con-
sistent fashion. Depending on the complexity of the task or sensitivity of
the data, the annotations might be obtained from SME or through data
annotation campaigns conducted by annotator teams hired and trained
for that purpose. These campaigns can be realized via interviews, crowd-
sourcing activities or gamification strategies.

Validation The quality of the annotations can be ascertained by measuring the inter-
annotator agreement. This step might also expose new topics or response
categories that were not known upfront, thus motivating a revision of the
data collection process or the project requirements.

Input Raw data samples and data annotation guidelines

Output A set of annotated linguistic resources to inform the development of pre-
dictive models.

MODEL DEVELOPMENT
Roles Computer Scientist and Subject Matter Expert

Goals Develop NLP methods to infer relevant signals from the data. This usu-
ally involves establishing simple baselines to ascertain that the signals
of interest can be measured with the current technologies. Depending
on the performance of the baselines, this step might also involve R&D
activities to develop novel models, techniques and linguistic resources
— e.g. leveraging domain knowledge to design task-specific features for
machine learning models.

Validation Models predictive performance on a held-out dataset. It might also become
apparent that the annotated resources are insufficient or inappropriate
for the intended goals or performance requirements, thus prompting a
new data annotation campaign.

Input Labeled data

Output One or more predictive models, which can be composed into ‘chains’ or
‘cascades’ to e.g. filter and decompose data streams or operationalize
complex decision processes.

Table 2.2: Data Annotation and Model Development tasks
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DATA ANALYSIS
Roles Data Scientist and Computer Scientist

Goals Distill structured information from the models output via statistical anal-
ysis and data mining techniques (e.g. aggregation, smoothing, clustering).

Validation The distilled information can then be used to build information visual-
ization tools allowing for analysts to explore, interpret and generate new
insights from the data. This step has an influence on the choice of predic-
tive models, particularly in determining how ‘interpretable’ should the
models be3 — in some cases, it might be preferable to have a less accurate
but more interpretable model.

Input Raw signals inferred by the predictive models

Output Indicators, time-series and other relevant statistics.

VALIDATION AND INTERPRETATION
Roles Data Scientist and Subject Matter Expert

Goals Validate the output of the system and interpret the outcomes of the anal-
yses. This might involve comparing the output of the system with gold
standard data, testing hypotheses or framing the interpretation of the
results in light of some theory. These findings and evaluation results can
also provide feedback to further refine the requirements and the data
analysis step.

Input Indicators, time-series and other statistics

Output New insights about the topic of study, which can be used to inform policies,
actionable decisions or be disseminated to specific audiences of the general
public.

Table 2.3: Data Analysis, Validation and Interpretation tasks
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2.4.1 POPMine: A Political Opinion Mining for the Web

After describing the high-level process of building SMA systems, we now look at a

real-world application. The preliminary phase of this research involved the develop-

ment of several such systems for computational journalists and political scientists. This

section, describes the development of POPMine, a political opinion mining system to

track the popularity and attitudes expressed about the main Portuguese politicians in

conventional and social media, over time (Saleiro et al., 2015). The project was carried

out by a development team of computer scientists and computational linguists; and an

analysis team of political scientists and economists. The former were responsible for

building and deploying the system and the latter were responsible for the analysis and

interpretation of the results. The system was deployed as a pipeline, depicted in Figure

2.3, to operationalize the following tasks:

1. collect texts from web-based conventional media and social media;

2. process those texts to recognize mentions to political entities and the expressed

opinion polarities;

3. generate longitudinal indicators of both frequency of mention and sentiment across

media sources.

Figure 2.3: Diagram of the POPMine system
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2.4.1.1 Data Collection

The first step involved setting up data collectors to retrieve and filter the relevant content

— we collected content from blogs (via RSS feeds), digital newspapers (via web scrappers),

and tweets from Portuguese users with Bošnjak et al. (2012)’s Twitter crawler. Politicians

are often referenced in the media by different surface names, current office titles (e.g.

the prime minister) and nicknames4. Therefore, we manually compiled and curated lists

of alternative names used to mention politicians from public knowledge bases (e.g. the

POWER ontology (Moreira et al., 2011) and the Sapo Verbetes API5) to extract search

terms and help with entity recognition and disambiguation. The goal was to measure

opinions expressed by ordinary social media users, hence we also manually compiled a

black list of accounts belonging to politics experts or news agencies, and created filters to

discard posts created by those accounts.

2.4.1.2 Model Development

The analytics pipeline consisted of two predictive models: a named entity disambiguator

and a sentiment classifier. The former worked as a relevancy filter that given a message

and the detected entity, predicts if the message is related to that entity — some politicians

have very common names so a mention might be referring to another person or to

something else entirely6. The latter was used to extract opinion polarities. The models

were deployed as a ‘chain’ , i.e. the first model acts as filter and discards irrelevant

messages; the rest are passed to the sentiment classifier.

This was the most challenging and laborious part of the process. It took months of

dedicated effort by two teams devoted to research and develop effective models for those

tasks. Both models attained state-of-the-art results in international shared tasks: see

(Saleiro et al., 2013) and (Filgueiras and Amir, 2013; Amir et al., 2014) for details on the

entity extraction and sentiment analysis models. However, we were only able to deploy

stripped down versions of these models, as some of the features depended on tools that

were not available in Portuguese. Moreover, the labeled datasets that were produced

were significantly smaller than the ones used on the R&D phase (around 1.5k examples).

The sentiment analysis dataset was also highly skewed containing only 10% of positive

4e.g. former Portuguese prime minister José Sócrates was often referred as “Sócras” in the social media
5https://store.services.sapo.pt/en/cat/catalog/other/free-api-information-retrieval-verbetes
6e.g. Portuguese politician Paulo Portas — ‘portas’ means ‘doors’ in Portuguese which was the source

of a lot of false positives
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examples7 and contained a large number of repeated messages (e.g. re-tweets) which

made it difficult to train the classifier — subsampling was not option here given the

already reduced size of the dataset.

2.4.1.3 Data Analysis

We created indicators of sentiment and buzz (i.e. the frequency with which political lead-

ers are mentioned), over time. These indicators were then aligned with polls and surveys

collected from professional pollsters and published via a rest API. However, the social

media indicators are much noisier, i.e. they have more variance, than conventional polls

and thus we used a Kalman Filter to estimate smoother trends from these measurements.

Unsurprisingly, most of the messages were classified as either neutral or negative which

prompted us to create different indicators focusing on volume and share of negative

messages, per politician. The API was then used to feed a near-real time visualization

tool for the political scientists and economists to interpret the measurements in light of

what was happening at the moment8.

2.4.2 Discussion

It is not hard to see that this process is rather laborious, expensive, and time-consuming

and thus, completely unsuited for time-critical applications (e.g. crisis management or

trauma response). The most demanding steps are the model development and data anno-

tation, as they involve coordination between different teams and experts and can take

days to months to complete. Furthermore, building custom models require specialized

resources which are difficult obtain and re-use. It was frustrating to use this approach

to build tools for journalists to analyze unexpected newsworthy events, because it took

days to: build the systems, assess and interpret the resulting data, write the stories

and go through the editorial process — by the time the article was complete it was

not news anymore. In the case of POPMine there was a limited budget to conduct the

annotation campaigns but in the case of time-sensitive applications there might not

be enough time to conduct extensive annotations tasks. Overcoming these obstacles

required investigating approaches to induce better models (e.g. with feature engineering)

in low-resource settings (e.g. exploiting unlabeled data) and experimenting with other

publicly available datasets.
7Bermingham and Smeaton (2011) also faced the same challenge when collecting a political opinion

mining dataset. Only 12% of the messages were labeled as positive.
8www.popstar.pt
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Another challenge was related to the data collection. We found that a great part of the

Twitter content related to Portuguese politicians was generated by accounts associated

to media outlets and professional analysts. In fact, outside the elections period most

discussion about politics was in reaction to some news related event. This raised several

questions, such as: if a positive opinion about a news story involving a politician should

be considered as support for the politician; should a retweet of a post expressing a

negative opinion or with a link to a negative story, be considered as another negative

opinion? If so, popular tweets (or mentioning popular news) would be included multiple

times, which can distort the results. Other similar questions that do not have a clear-cut

answer also appeared throughout the project. The informality and diversity of social

media may make even tasks as simple as collecting ‘relevant data’ illusive, therefore it

can be difficult to know exactly what is being measured by SMA systems. These issues

were the motivation for the research presented in this dissertation.

2.5 Summary

This chapter introduced the main concepts and previous works related to social media

analysis. The main methodologies used to build these systems and their limitations

were discussed and some of the applications developed for the social sciences and public

health domain were briefly described. We highlighted the main challenges of processing

user generated content and the common approaches to build predictive models for

subjective data. Then, previous work on sentiment analysis and sarcasm detection tasks

was reviewed. The increased ambiguity of this type of communications requires more

sophisticated models based on heavily engineered features, and larger training datasets.

Low-resource learning methods to cope with scarcity of labeled data were also briefly

discussed — neural language models in particular, present an effective mechanism to

incorporate unlabeled data into pre-existing supervised models, and will be further

explored throughout this research. The main concepts and basic neural network models

were introduced here and will be also be expanded in the rest of the thesis, since one

the main goals of this research is finding methods reduce the costs of building neural

networks to improve the development SMA models. Finally, we discussed the high-level

process and the main tasks of building SMA systems for real-world applications and

described how this process was materialized in the development of political opinion

mining system for the web.
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LOW-RESOURCE NEURAL NETWORKS

FOR NOISY TEXT ANALYSIS

Generic BOW models are often insufficient for inferences over subjective social

media. To go beyond these methods there are currently two main options: either

enriching these models with highly specialized features, or adopting deep neural

networks to automatically learn sophisticated models from data. If the first requires

extensive manual efforts in feature engineering, the second also requires significant

efforts in producing larger annotated datasets, as well as finding the best architecture

amongst a myriad of possible components and a huge configuration space. This chapter

investigates approaches to reduce the gap between the manual efforts that go into model

development and the quality of the resulting model. A method is proposed to build

supervised neural networks in low-resource settings, which can be used to reduce the

efforts of deploying of specialized models for noisy and subjective content (Section 3.1).

This method is then leveraged to derive specialized document-level classifiers for SMA

applications. The classifiers were first evaluated over a collection of Twitter sentiment

analysis and opinion mining datasets (Section 3.2). Then, a case-study of real-world

social media analysis applied to the social sciences is conducted, leveraging a range of

datasets collected by computational social scientists. The study consisted in building

bespoke classifiers to investigate a myriad of contemporary issues, from attitudes towards

politicians to reaction to natural disasters, as expressed by Twitter users (Section 3.3).
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3.1 Low-Resource Neural Networks

Deep neural networks are able to learn specialized models for many non-trivial prediction

tasks which, despite using little explicit human intervention, outperform well established

baselines and in some cases even human themselves (Goodfellow et al., 2016). However,

taking full advantage of these methods requires access to large manually labeled training

datasets or strategies to automate the creation of such datasets, e.g. synthesizing training

data (Jaderberg et al., 2014) and self-training (Silver et al., 2017). Therefore, these

methods excel in problems that require a single model for a specific and well-defined

task, but become less practical for subjective problems or when multiple ‘small’ models

are required for exploratory studies or multifaceted analyses.

Another well-known technique used to overcome the lack of labeled data is to integrate

multiple sources of supervision by pre-training some of the layers with large amounts

of ‘cheap’ data (e.g. unlabeled, distantly labeled, or out-of-domain data) and then fine-
tuning the whole network with the training error gradients from the task-specific labeled

data. However, directly updating pre-trained layers might still require estimating a large

number of parameters and thus fail when only small training datasets are available. This

problem is only exacerbated with noisy data, such as social media, where singletons and

out-of-vocabulary words (OOV) are frequent — these words (i.e. their representations)

will receive very few updates and hence be poorly adapted for the intended task; even

worse, words not seen during training will never be updated. To address this problem,

we developed a novel approach to build task-specific NLP models with scarce and noisy

training datasets.

Assuming that the pre-trained embeddings induced by neural language models cap-

ture meaningful information, the problem of inducing specialized models can be cast

as that of extracting tailored representations from generic embeddings. We follow the

intuition that for any given prediction problem, only a subset of the latent aspects cap-

tured in the representation space is relevant. Therefore, instead of directly updating

the embedding layer, we can use the labeled data to learn lower-dimensional adapted

representations that capture task-specific information. In turn, leveraging smaller rep-

resentations helps to reduce the complexity of downstream models thereby reducing

the chances of overfitting to small training datasets. Hence, we can derive low-resource

neural networks in two steps:

1. exploiting large unlabeled corpora to train neural embedding representations;

2. constructing minimalist neural architectures, i.e. with a single small hidden layer.
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The hidden layer acts as an adaptation mechanism that translates generic concepts

into domain specific ones;

This results in low-capacity models with enough flexibility to learn and exploit spe-

cialized representations for the task at hand, thus eliminating the need for manually

designed features. Moreover, decoupling the process of learning generic and specialized

representations allows the same embeddings to be reused and adapted for different

applications with a small amount of task-specific labeled data, as depicted in Figure 3.1.

3.1.1 Tailored Representations with Embedding Subspaces

Neural embeddings are learned distributed representations, i.e. they describe each

concept with multiple features (vector dimensions can be interpreted as abstract features)

and each feature can be involved in describing multiple concepts1. By training the

embeddings in a prediction task, certain groups of features learn to detect and encode

specific aspects of the data (Hinton, 1986). However, if we knew which set of features

describes the most relevant properties for a specific task (e.g. sentiment analysis) we

could extract compact representations tailored for that task, thereby eliminating noise

and irrelevant aspects of the data.

Let E ∈Re×|X | be a pre-trained embedding matrix where columns represent instances

from a fixed sized set X (e.g. words) and e is the number of latent dimensions. Assuming

that for any given prediction task, there exists a lower-dimensional embedding subspace
that encodes the most meaningful aspects for that problem, then we can use labeled

data to find a projection into that space. Therefore, we propose to learn task-specific

embeddings, by factorizing the input as H ·E, where H ∈Rs×e is a projection matrix with

s ¿ e. In other words, we keep E fixed and determine the optimal linear projection of the

original embedding matrix into a low-dimensional subspace of dimension s, with respect

to the prediction target. Hence, the transformation corresponds to adapting generic

representations into task-specific ones. The intuition is that by aggressively reducing the

representation space, the model is forced to learn only the most discriminative aspects of

the input, while preserving the rich information from the original embeddings2.

1In contrast, symbolic representations associate each feature to only one concept — e.g. the one-hot
encoding, represents word i as a zero vector with the value 1 on the i-th dimension.

2This is also related to the idea of learning representations with information bottlenecks, e.g with
auto-encoders (Hinton and Salakhutdinov, 2006)
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Figure 3.1: Low-resource Neural Networks for Social Media Analysis

3.1.2 Non-Linear Subspace Embedding Model

The concept of embedding subspace can be applied to deep neural architectures or to

simpler models. Our goal here is to derive a low-capacity model, thus we now describe

the simplest architecture based on this technique, henceforth denoted as the Non-linear

Subspace Embedding model (NLSE). Let D = {(x(1), y(1)), . . . , (x(N), y(N))} be a labeled

dataset where x ∈X denotes an instance represented in one-hot form and y ∈ R is the

respective label, the model induces a function fθ(·) parameterized by θ = {w,b,H} that

given an instance x, estimates a label ŷ as

fθ(x)=w ·φ(x)+b

φ(x)=σ (H ·E ·x)
(3.1)

where w ∈ R1×s and b refer to the predictor weights and σ(·) denotes an element-wise

non-linear function (e.g. sigmoid), which allows the model to learn the intermediate

representations. The model has only two hyperparameters — the size of the subspace s
and the form of σ. Notice that at inference time f (x) reduces to a linear predictor3 with

embedding subspace features φ(x).

3Note that without the non-linearity the would model essentially be learning a single projection
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The NLSE can also be interpreted as a Multi-layer Perceptron with one single hidden

layer (Rumelhart et al., 1988), but it differs in two key aspects: first, the input layer

is factorized into two components: the generic input embeddings E, and the estimated

subspace projection matrix H; second, the size of the subspace is much smaller than that

of the original embeddings, with typical reductions above one order of magnitude. Simi-

larly to other neural networks, the parameters θ can be estimated with gradient-based

optimization methods and the backpropagation algorithm to compute loss gradients with

respect to all the parameters.

3.2 Document-level Models

This section leverages the NLSE approach to build specialized document-level classifiers.

A known limitation of feedforward neural networks is that the inputs must be represented

as single fixed sized vectors. A question that arises when building word embedding based

models for textual inferences, is how to transform individual word representations

into a single document representation. The simplest approach is to use a bag-of-words

assumption and just sum up the individual vectors. For example, the MLP projects one-
hot document vectors into the input layer as linear combination of the individual word

embeddings. However, squashing the vectors implies a loss of resolution and information.

Other, more sophisticated, compositional models have been proposed to address this

issue, e.g. Convolutional Neural Networks extract (task-specific) local features which are

then aggregated to represent the entire document (Collobert et al., 2011); and Recurrent

Neural Networks process variable length inputs sequentially, and at each step, form an

internal representation that depends on the current and previous words (Hochreiter and

Schmidhuber, 1997). However, these models require a lot of training data and the latter

are notoriously harder to optimize (Pascanu et al., 2013).

Here, we explore a variation of the bag-of-words approach, which allows the model

to preserve the embedding information as much as possible. Instead of squashing the

vectors at the input layer, these are first processed in a forward pass through the network

and aggregated after the output layer. This means the model makes individual word-level

predictions with respect to the document label and then aggregates those predictions,

as depicted in Figure 3.2. More formally, given a document d = {w1, . . . ,wn} composed

of n words drawn from a predetermined vocabulary V , and a word embedding matrix

E where each column represents a word w ∈V , we represent document d as a one-hot
matrix
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(3.2) D=


x1
...

xn


where each row xi denotes a word in one-hot form. Then, we predict a probability

distribution over the labels of a document as

P(Ŷ |d)∝ (W ·φ(D)) ·1(3.3)

φ(D)=σ (H ·E ·D)

where W ∈ R|Y |×s is a matrix of classifier weights, H ∈ Rs×e is the subspace projection

matrix and 1 ∈ 1n×1 is a matrix of ones that sums the un-normalized probability scores

for all words. Note that, once learned, the subspace projection can be used to induce

tailored representations even for words that were not seen in the training data (i.e.

out-of-vocabulary words), thereby improving models’ generalization and robustness to

noisy data.

3.2.1 Evaluation: Sentiment Analysis and Opinion Mining

To evaluate our approach, we developed sentiment analysis and opinion mining classifiers

in a low-resource setting, i.e. with fairly small datasets and no manually devised features.

We used the datasets described in Table 3.1 wherein each document is classified as

positive, negative or neutral. We compared the performance of our model with that of

standard off-the-shelf classifiers and other representation learning methods:

• NB: Näive Bayes;

• BOW: linear models with bag-of-word features;

• BOE: linear models with bag-of-embeddings features, i.e. a document x is repre-

sented as φ(x)= (E ·x) ·1 where x is a one-hot document vector;

• MLP: Multi-layer Perception;

• CNN: Convolutional Neural Network with one hidden layer and three filters

corresponding to unigrams, bigrams and trigram features, as described by Kim

(2014);
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Figure 3.2: Schematic depiction of the Non-Linear Subspace Embedding Model for
document-level classification

3.2.2 Experimental Setup

Our method requires a set of unsupervised word embeddings, thus we resorted to the

corpus of 52 million raw tweets described by Owoputi et al. (2013) to estimate 400-

dimensional vectors with the Structured Skip-Gram model (Ling et al., 2015a). To

help reduce the lexical variability, all the datasets were pre-processed with the typical

procedure (described in Section 2.1.5). The experiments were conducted using 10-fold

cross-fold validation, using the same partitions across all the models. For each partition,

the training set was divided into 80%/20% train/validation subsets to facilitate model

selection by early-stopping and hyper-parameter selection via grid search.

Regarding the hyper-parameters, we searched the best subspace size for the NLSE

model in the range S = [3,5,10,15,20], the number of feature maps and size of the hidden

layer for the CNN in the set M = [50,100,200,400] and size of the hidden layer in the

same range for the MLP model. The Näive Bayes baseline was trained with Maximum

Likelihood Expectation while the rest of the models were trained with vanilla Stochastic

Gradient Descent to minimize the inverse average log-likelihood of the observed data D

3.2.3 Results

The classification results presented in Figure 3.3 show that the NLSE model largely

outperform the linear models. This is intuitive and agreeable with the literature —

simple bag-of-word models are insufficient for inferences over subjective content. The
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Dataset Size Description
Sentiment TW-13 3812

Tweets annotated w.r.t overall sentiment by SemEval
for their Twitter Sentiment Analysis challenge

TW-14 1852
TW-15 2389

Opinion OMD 2385 Tweets with reactions to a debate opposing presiden-
tial candidates Barack Obama and John McCain in
2008 (Diakopoulos and Shamma, 2010)

HCR 2392 Tweets discussing the health care reform in the USA
in 2010 (Speriosu et al., 2011)

Table 3.1: Summary of the sentiment analysis and opinion mining datasets used in the
social media text classification experiments.

Näive Bayes model is particularly inefficient, due to its inability to cope with the extreme

feature sparsity caused by noisy data. Despite using the same sparse document represen-

tations, the BOW model performs much better, because it can benefit from regularization

and learn to ignore non-informative tokens.

Regarding the neural models, we observe that the MLP results are comparable to the

BOW while the BOE models tend be slightly better. The embeddings offer more compact

representations and can represent arbitrarily large vocabularies without increasing

the model’s complexity. This can alleviate the problems of feature sparsity and out-of-

vocabulary words but, on the other hand, models based on these representations do not

benefit from regularization. In fact, the opposite is true, eliminating the contribution of

individual dimensions degrades the expressiveness of the embeddings. Our experimental

results confirm this observation; we noted that the hyper-parameter selection process

always favored configurations with less regularization. We can also see that the CNN

performs very poorly as it requires more training data to be accurately optimized.

Compared to these baselines, the NLSE takes the best of worlds — on the one hand,

it can represent large vocabularies with compact representations. On the other hand,

aggressively reducing the representation space sharply reduces the model’s capacity,

thus imposing an implicit form of regularization and forcing the model learn more

discriminative representations.

3.3 Case Study: Agile Social Science

This section aims to validate the proposed low-resource neural networks in real-world

applications, by conducting a case-study of social media analysis applied to the social

56



3.3. CASE STUDY: AGILE SOCIAL SCIENCE

Figure 3.3: Classification results in terms of the average F1 metric

sciences. We used datasets collected and curated by computational social scientists at

the Centre for the Analysis of Social Media4 (CASM) in the UK, for a wide range of

exploratory social sciences studies ranging from reactions to political debates to natural

disasters. These datasets, described by Kober and Weir (2015) and summarized in Table

3.2, consist of training data for bespoke SMA pipelines containing annotations for either

objective tasks, such as topic detection and relevancy filtering (♠), or subjective tasks, e.g.

sentiment analysis and opinion mining (♥). The pipelines were created with the modeling

framework developed by Wibberley et al. (2013), which is based on the DUALIST — a

system proposed by Settles (2011) to reduce annotation efforts in the development of text

classifiers. However, the DUALIST was created for conventional text and thus ignores the

challenges of processing social media. Critically, it uses Näive Bayes as the underlying

model which is particularly inefficient for these data, as we have seen above.

3.3.1 Evaluation

We compared the performance of NLSE classifiers and generic linear classifiers over

the aforementioned datasets. The evaluation was conducted using the same experiment

protocol and the same pre-trained word embeddings from the previous section. Figures

3.5 and 3.4 show the results for the sentiment analysis and topic detection datasets,

respectively. Once again, we observe that the NLSE model consistently outperforms the

4https://www.demos.co.uk/research-area/centre-for-analysis-of-social-media/
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Dataset Task Size Description
boo-cheer ♥ 1665 Opinions about a political debate
cameron-1 ♠ 205 Opinions about former British Prime Minister David

Cameroncameron-3 ♥ 502
clacton ♥ 930 Attitudes about a controversial by-election triggered

by the UK Independent Party
clegg ♥ 500 Opinions about British politician Nick Clegg
debate ♥ 306 Opinions about a political debate
duggan-1 ♠ 475 Tweets discussing a controversial story of alleged

police brutality in the UKduggan-3 ♥ 401
farage ♥ 2614 Opinions about British politician Nigel Farage
flood-1 ♠ 530 Tweets related to winter floods that occurred in the

South of Englandflood-2 ♠ 1615
miliband-1 ♥ 927 Opinions about a British politician Edward Miliband
miliband-2 ♥ 449

Table 3.2: Summary of the agile social science datasets, described by Kober and Weir
(2015). These datasets were collected from different stages of custom classification
pipelines created by computational social scientists, and refer to either topic detection
(♠) or sentiment analysis (♥) tasks.

other baselines, particularly on the more subjective datasets. We can also see that simple

Näive Bayes classifiers perform terribly on most datasets, which is not surprising given

their inability to cope with noisy data. The BOE models have very inconsistent results

sometimes performing better than BOW but in other cases is much worse.

These results show that just reducing the data annotation efforts is insufficient to

improve the quality of SMA applications. Adequate inference of noisy and subjective

content also requires specialized models that are able to exploit more sophisticated

and fine-grained representations of the input. Simplistic models such as Näive Bayes,

ought to be avoided for such inferences as they might erroneously lead us to believe

that there is no signal in data. Despite the obvious limitations, these methods are still

being used by computational social scientists in real world analyses. In contrast, the

NLSE model’s ability to learn specialized models for a wide range of tasks and datasets,

strongly suggests that this method should be part of any social media analyst toolkit,

and constitutes a new baseline against which further developments in rapid deployment

of SMA models should be measured. One advantage of Wibberley et al. (2013)’s approach

is that it can easily support dual-supervision, i.e. leveraging annotations for documents

and individual words, which can reduce annotation efforts. How to operationalize this
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technique with our method remains an open question and a worthwhile topic for future

work.

Figure 3.4: Topic classification

Figure 3.5: Sentiment classification

3.4 Conclusions

This chapter investigated methods to reduce the gap between the manual efforts that

go into the development of SMA models and the quality of the resulting models, in
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terms of predictive performance. To that end, we developed a method to build supervised

neural network models in low-resource settings by: first, exploiting large amounts of

unlabeled data to learn generic neural embeddings, thereby mitigating the manual

efforts in data annotation; and second, constructing low-capacity neural architectures to

automatically tailor the embeddings and induce specialized models for the task at hand,

thereby ameliorating the manual efforts in feature engineering.

The evaluation was first performed over a set of Twitter sentiment analysis and

opinion mining datasets. We compared the performance of the NLSE against that of

other off-the-shelf baselines i.e. bag-of-words models without manually crafted features

and deep neural network models. The results showed that our model has superior

performance across all the datasets. This was expected, since generic BOW models are

not able to capture the subtleties of subjective communications, and complex neural

models require larger training datasets to be properly optimized. Then, a case-study

of real-world social media analyses for the social sciences domain was conducted. We

leveraged a collection of datasets compiled by social scientists to build SMA pipelines

and evaluated the performance of bespoke classifiers for objective and subjective tasks

built with our approach. Again, we found that the NLSE consistently outperforms the

baselines. As expected, the gains were particularly pronounced in the more subjective

tasks which require more sophisticated representations. These results demonstrate that

our approach can be leveraged to quickly deploy document-level classifiers for a variety of

problems, with little explicit intervention of subject matter experts or domain knowledge,

even in low-resource settings.

This approach offers a reasonable trade-off between the simplicity and interpretability

of standard linear models and the benefits of neural representation learning. However,

we should emphasize that we are essentially trading variance for bias and this comes

with some caveats, particularly when training with small datasets. Low-resource training

imposes limitations on what kind of models can be learned — more complex problems

will always require more sophisticated models and consequently more labeled data. An

underlying assumption of this method is that the pre-trained embeddings already encode

the relevant information for a specific task, to some degree. If this is not the case, however,

then more training data might be required to learn appropriate representations. Another

important limitation of this approach is the assumption that there is a pre-trained

embedding available for every possible word; but even embeddings estimated from a very

large corpus will certainly not contain all the possible types — words not seen during

embedding estimation will not have an associated representation. One way to tackle this

60



3.4. CONCLUSIONS

issue is by using character-level embeddings as the input and then leverage a composition

function to generate representations for any word from the individual characters. We

did some preliminary experiments along these lines but we used a very rudimentary

character embedding model which was much worse than the word embeddings for known

words (Amir et al., 2016b). Nevertheless, I believe that better results can be obtained

with more sophisticated models that have been recently proposed (Ling et al., 2015b;

Kim et al., 2016).
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WORD-LEVEL MODELS FOR LEXICON INDUCTION

Lexicon-based social media analysis approaches are hampered by the scarcity of

comprehensive lexicons describing subjective properties of words, as they are

used in social media communications. Creating these resources from scratch is

laborious and time-consuming, hence, improving lexicon-based SMA requires the ability

to easily create comprehensive lexicons tailored for specific languages and applications.

The previous chapter, introduced the NLSE model and demonstrated that it can be

used to induce specialized document-level models. This chapter further exploits this

method to derive specialized word-level models from labeled lexicons. The resulting

models can naturally be used to extrapolate such labels to any other word (provided

that it has an embedding representation) and thus can be used to automatically expand

pre-existing linguistic resources. To evaluate this approach, we developed word-level

models to predict the ratings assigned by humans to words in seven well-known lexicons,

describing 14 subjective aspects (Section 4.1). Then, we investigated the impact of low-

resource training in the performance of the NLSE. Finally, we used a word-level model to

induce a large-scale sentiment lexicon and assessed the impact of the expanded lexicons

in downstream SMA applications. To that end, we compared the performance of small and

expanded lexicons over lexicon-based Twitter sentiment classifiers. We also compared

with other baselines leveraging a publicly available large-scale sentiment lexicon and

supervised classifiers trained with small datasets (Section 4.2).
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4.1 Word-level Models

In this section, we leverage the NLSE to build specialized word-level models to adapt

pre-existing manually curated lexicons to social media. Given a lexicon describing sub-

jective aspects of words (e.g. sentiment polarity) the goal is to train models to predict

those aspects for other, unseen, words. Most lexicon induction methods proposed in

the literature follow the intuitive assumption that similar words should have similar

labels (see Section 2.2.1). For example, we would like to assign similar labels to different

spellings, inflections and synonyms of the same word (e.g. l0ver, and loveerz), and

to semantically related terms (e.g. happy and #feelinggreat). To operationalize this

intuition, we capitalize on two fundamental properties of neural word embeddings: first,

they capture latent word semantic aspects, some of which correlate with subjective

properties; and second, they encode semantic and syntactic similarities in terms of vector

similarities — this will allow us to infer consistent labels for similar and related words.

Note that leveraging word embeddings estimated from a large corpus, representative

of language used in social media, allows the models to infer labels even for misspelled

words and abbreviations. Therefore, this method corresponds to adapting small manually

curated lexicons to social media environments.

Previous work by Tang et al. (2014) and Amir et al. (2015) have also investigated the

use of word embedding based models to expand Twitter sentiment lexicons. However,

both those methods are inherently limited by their choice of word representations — the

former uses distantly supervised sentiment specific embeddings tailored to capture senti-

ment information, which constrains the method to sentiment polarity lexicons. The latter,

on the other hand, can be used for other lexicon types but it relies on purely unsupervised

embeddings, which are sub-optimal for specialized downstream models (Astudillo et al.,

2015b). Herein, we capitalize on the NLSE to generalize this approach — the model uses

generic embeddings as input, and thus can be used for any lexicon. On the other hand, it

also learns tailored representations and thus can be applied to more nuanced properties

of words (e.g. emotional tone). Let D = {(w(1), y(1)), . . . , (w(N), y(N))} be lexicon associating

words w ∈V to labels y ∈Y , and E ∈Re×|V | be an word embedding matrix. Given a word

w represented as a one-hot vector x ∈ {0,1}|V | we estimate a label as

ŷ= fθ(x)=W ·φ(x)+b

φ(x)=σ (H ·E ·x)
(4.1)

where σ(·) is a sigmoid non-linearity, W ∈R1×s denote the model weights, and H ∈Rs×e is

an embedding subspace projection matrix that induces specialized representations.
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4.1.1 Evaluation: Expanding Subjective Lexicons

The evaluation consisted of using labeled lexicons to train predictive models to infer

the same labels for unseen words. The experiments were conducted over seven lexicons,

summarized in Table 4.1, describing 14 subjective aspects: subjectivity, sentiment polarity,

affective responses (i.e., the valence, arousal and dominance), happiness, and Plutchik

(1980)’s eight basic emotions. Some of these lexicons are categorical, i.e. associating words

to specific classes; and others are continuous, assigning real-valued scores to words. For

the former, the models were evaluated with respect to the Average F1 metric, and for the

latter, the models were evaluated in terms of the Kendall τ.

As baselines, we considered other methods using word embeddings as the input,

including a simple linear model (linear) and a Support Vectors Machine model (Vapnik,

2000) with a non-linear kernel (RBF) as described by Amir et al. (2015). We also compared

the performance of linear models with features derived from two other methods that

are commonly used to extract more compact representations of the input: (i) using

`1-norm regularization to implicitly prunes the feature space by forcing the weights

associated to some input dimensions to be exactly zero (`1); and (ii) using PCA to extract

lower-dimensional features from the word embeddings (PCA).

The experiments were performed with the same word embeddings described in

Section 3.2.2. The labeled data (i.e., the lexicons) was split into 80% for model training

and 20% for evaluation. In each experiment, 20% of the training data was reserved for

early stopping and hyper-parameter tuning. The linear baselines were trained with the

SVM implementation available in the sci-kit learn python package, and the NLSE

was trained with vanilla Stochastic Gradient Descent with fixed learning rate. Regarding

the hyperparameters, we picked the optimal misclassification cost from the set C =
{1e−2,1e−1,1,10,50,100,150} and kernel width from the set K = {1e−3,1e−2,1e−1,1,10} in

the RBF baseline; regularization constant from the set B = {1e−4,1e−3,1e−2,1e−1,1,10}

in the regularized baselines; the number of components to keep in the PCA baselines,

from the set S = {5,10,15,20}; and size of the embedding space for the NLSE also in the

set S.

4.1.2 Results

The main experimental results with categorical and continuous lexicons are presented

in Tables 4.2 and 4.3, respectively. We can see that the NLSE largely outperforms all the

other baselines, apart from two exceptions, where the RBF does slightly better. Regarding
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Lexicon Size Description
Categorical OML 6,787 Opinion mining lexicon with words categorized

with respect to sentiment polarity (Hu and Liu,
2004)

MPQA 6,886 Subjectivity lexicon with words rated as objec-
tive/subjective and with respect to sentiment
polarity (Wilson et al., 2005)

EmoLex 14,174 Emotion lexicon describing words in terms of
their sentiment polarity and association with
Plutchik (1980)’s set of basic emotions (Mo-
hammad and Turney, 2013)

Continuous ANEW 1,040 Affective lexicon with words rated with respect
to the degree valence, arousal, and dominance
that they evoke (Bradley and Lang, 1999)

Ext-ANEW 13,915 Expanded version of the ANEW lexicon with
ratings for additional words obtained from
Amazon’s Mechanical Turk workers (Warriner
et al., 2013)

SemLex 1,515 Sentiment lexicon created for SemEval’s lex-
icon induction shared task (Rosenthal et al.,
2015). The words are rated in continuous scale
representing the degree of association to the
positive polarity.

LabMT 10,000 Happiness lexicon with words annotated in
terms of happiness score, assigned by Ama-
zon’s Mechanical Turk workers (Dodds et al.,
2011).

Table 4.1: Summary of the subjective lexicons used in the experiments

the other baselines that try to uncover the relevant information from the embeddings

(i.e., PCA and `1), again we can see that they perform very poorly. This was expected,

since the former induces a low-rank approximation of the original embedding, that

(tries to) preserve most of the variance. However, since word embeddings are distributed

representations, the values of individual dimensions are meaningless. The latter, on the

other hand, tries to drop some of the input dimensions, but in doing so degrades the

information contained in the word representations. These approaches are particularly

inefficient in the more nuanced properties such as fine-grained emotions. Conversely,

these are precisely the cases where our approach stands-out, which underlines the

benefits of inducing task-specific representations.
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NLSE SVM
linear `1 RBF PCA

OML sentiment 0.882 0.868 0.686 0.872 0.852
MPQA sentiment 0.691 0.691 0.221 0.669 0.555

subjectivity 0.825 0.819 0.798 0.833 0.805
EmoLex sentiment 0.676 0.630 0.404 0.640 0.468

sadness 0.509 0.340 0.167 0.334 0.000
fear 0.503 0.373 0.261 0.394 0.000
anger 0.468 0.353 0.214 0.366 0.000
disgust 0.446 0.343 0.180 0.352 0.000
joy 0.440 0.333 0.148 0.329 0.000
trust 0.403 0.201 0.190 0.167 0.000
surprise 0.204 0.167 0.093 0.119 0.000
anticipation 0.240 0.108 0.151 0.044 0.000

Table 4.2: Results for categorical lexicons in terms of Avg. F1

NLSE SVM
linear `1 RBF PCA

SemLex sentiment 0.667 0.610 0.619 0.630 0.622
LabMT happiness 0.640 0.576 0.573 0.622 0.464
ANEW arousal 0.440 0.365 0.375 0.415 0.389

valence 0.683 0.612 0.604 0.646 0.592
dominance 0.546 0.477 0.456 0.494 0.475

Ext-ANEW arousal 0.393 0.373 0.371 0.397 0.315
valence 0.607 0.567 0.565 0.593 0.494
dominance 0.480 0.445 0.443 0.464 0.405

Table 4.3: Results for continuous lexicons in terms of Kendall τ rank correlation

The overall results show that the word-level models can indeed capture a wide range

of semantic properties and be leveraged to induce large-scale subjective lexicons, from

small manually labeled samples. In Table 4.4 we present some examples of words from

SemLex (top row) along with other similar words with inferred labels (bottom rows). We

can see that the model assigns consistent scores to related words and morphological

variations thereof, suggesting that this method can be used to accelerate the creation

of large lexicons. The quality of the resulting lexicons can be then improved by human

experts, by discarding irrelevant words and erroneous labels, which will certainly be less

laborious than manually assigning labels to new words. In the next section, we will see

that we can also use task-specific labeled data to automatically improve the expanded

lexicon.
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love 0.93 fun 0.883 lol 0.625
lovely 0.880 jokes 0.878 lololol 0.671
loving 0.875 comedy 0.878 lolol 0.650
loved 0.874 funny 0.814 lolo 0.642

Table 4.4: Predictions from a word-level model trained with the SemLex lexicon — the
top row shows words and scores that were present in the training data and the bottom
rows shows cherry picked examples of predictions made by the model. We can see that
the model assigns consistent labels to related and similar words.

Figure 4.1: Performance of the different baselines in predicting the happiness score of
words, as a function of the size of the training data.

To take a closer look at the low-resource learning capabilities of our method, we used

the LabMT lexicon and repeated the experiments with smaller fractions of the training

data. We then plotted the performance of the different baselines as a function of the

training data size (Figure 4.1). As expected, the performance of all models decreases

monotonically as the training set size decreases but we observe that the NLSE perfor-

mance decays slower than the RBF baseline (the second-best method). Notably, when

trained with 30% of the data, the NLSE model attains the same performance of the SVM

RBF baseline trained with 70% of the data, again reinforcing the benefits of leveraging

specialized low-dimensional representations in low-resource settings.

Finally, we investigated the effect of the subspace projection on the word representa-

tion space. To that end, we used Van der Maaten and Hinton (2008)’s T-SNE algorithm to

project the embeddings associated to words from SemLex into two-dimensions, and plot-
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Figure 4.2: T-SNE projection of the embeddings associated to words from SemLex, to
two dimensions. The points are colored according to their sentiment polarity. The left
plot, shows the words represented as 600-dimensional unsupervised embeddings. The
right plot, shows the same words represented with task-specific embeddings induced
with NLSE model.

ted the resulting vectors colored according to their sentiment score. Figure 4.2 compares

the structure of the generic embedding space with the task-specific embedding subspace

induced by the NLSE. On the left-hand side, we can see that the generic embeddings can

naturally capture sentiment information — words with similar sentiment scores tend to

be closer to each other. On the right-hand side, we see that in the space induced by the

sub-space projection, not only are similar words (w.r.t to sentiment) drawn even closer but

also, quite interestingly, the vectors become arranged in what seems to be a continuum
from the most negative to the most positive sentiment polarity. This demonstrates that

the subspace projection is indeed able to uncover some underlying substructure of the

embedding space.

4.2 Improving Lexicon-based Social Media Analysis

In this section, we assess the impact of expanded lexicons in practical applications by

developing simple lexicon-based sentiment classifiers, using Eq. 2.2.

4.2.1 Calibrated Lexicons

Large-scale lexicons can improve models predictive performance by accounting for a

number of words that would otherwise be missed by manually curated resources — in

other words, they help to reduce the bias of the model. On the other hand, the majority
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of words do not convey any subjective information (e.g. only a fraction of all the possible

words express positive or negative sentiments), therefore the main strength of large-scale

lexicons is also their weakness. Because we have labels for all the words in a vocabulary,

they all contribute to the predictions which increases the models variance1.

Dodds et al. (2011) also noted this issue and addressed it by manually specifying

a threshold score to restrict the lexicon only to words that strongly convey sentiment

(i.e. neutral and objective words were discarded). However, they were using a manually

curated lexicon of 10k words whereas our lexicons are at least one order of magnitude

larger, which makes their manual inspection unpractical. Ideally, automatically created

lexicons should be manually inspected and validated against domain experts knowledge.

If this is not possible, a reasonable approach is to use some task-specific labeled data to

inform the pruning of irrelevant words. The simplest methodology to accomplish this

is with a grid search to find the upper and lower score thresholds, that optimize the

predictive performance with respect to a specific task/dataset.

4.2.2 Evaluation

The evaluation was conducted over the same sentiment analysis and opinion mining

datasets summarized in Table 3.1. These datasets are labeled with respect to the 3

classes but here we restricted the experiments to binary classification, i.e. considering

only positive versus negative documents. We compared the performance of lexicon-based

classifiers built on top of the following sentiment lexicons:

• SemLex, a small manually labeled Twitter sentiment lexicon

• SemLex-XL obtained by automatically expanding SemLex with our method;

• NRC-HS obtained by measuring the PMI between new words and a set of affectively

charged hashtags Kiritchenko et al. (2014);

We also assessed the impact of calibrating the lexicons with a small amount of labeled

data and compared with the performance of simple supervised text classifiers trained

with the same amount of labeled data. Thus, we reserved a development set of 10% of

each dataset and used the rest to test the models. The classification threshold was set to

t = 0 and the lexicons were calibrated by filtering words with scores between the range

[s−; s+], so that only strongly negative words and strongly positive words were kept. To

1This can also be seen as precision versus recall trade-off.
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that end, we performed a grid search over the intervals s− ∈ [−0.4,−0.1] and s+ ∈ [0.1,0.4]

and picked the values that maximize the models performance on the development set.

Figure 4.3: Improving the performance of lexicon-based classifiers

Figure 4.4: Performance of calibrated lexicon-based classifiers built on top of different lex-
icons compared with supervised models in binary classification over sentiment analysis
and opinion mining datasets.
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4.2.3 Results

Figure 4.3 compares the results obtained with classifiers induced with SemLex and

SemLex-XL, with and without the aforementioned calibration procedure. We observe

that calibrating the lexicons significantly improves models performance in nearly all the

cases, particularly with the large-scale lexicon, yielding gains of up to 26% in absolute

performance. Without this step, the large lexicon performs rather poorly, which was

expected due to an increase in model variance. Overall, we can see that the expanded

lexicons drastically improve model performance affording gains of up to 10% in absolute

performance when compared to using just the original lexicon, provided the proper

calibration. If we compare the performance of the large-scale calibrated lexicon against

the small (uncalibrated) lexicon, then the gains go up to 19%. Figure 4.4 compares the

performance of the lexicon-based models against bag-of-words (BOW) classifiers trained

with the same datasets used to calibrate the lexicons. The plots show that SemLex-XL

outperforms the other baselines in most cases, with the exception of the OMD dataset.

Indeed, lexicon-based classifiers generally outperform supervised models trained with

such limited amounts of labeled data (in these experiments we used 250 examples

on average). These results demonstrate that lexicon-based classifiers can be a viable

alternative to supervised models in the absence of large amounts of unlabeled data.

Specially, by combining large scale lexicons, which can be obtained from a small number

of examples, with small amounts of task-specific labeled data which can also be easily

created in a few minutes.

4.3 Conclusions

This chapter demonstrated that the low-resource neural networks can be used to auto-

matically adapt pre-existing lexicons to social media environments. Concretely, we can

build specialized word-level models which can be trained from small lexicons to infer

similar labels for unseen words. This approach was validated in a lexicon expansion task

aiming to predict the ratings assigned by human judges to various subjective lexicons.

The experimental results showed that our models can be trained to infer high-level

subjective word properties and assign consistent labels (w.r.t. to those properties) to

similar and related words. Furthermore, these models consistently and significantly

outperform baselines based on generic embeddings, particularly on more nuanced prop-

erties (e.g. fine-grained emotions). We observed that generic embeddings can, to some

extent, capture various subjective attributes but the tailored representations induced by
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the NLSE significantly improve performance and allows models to make better use of

limited datasets.

Then, we assessed the impact of large-scale lexicons induce with our method in

downstream SMA applications. To that end, we built and evaluated lexicon-based Twitter

sentiment classifiers and compared the performance of small and expanded lexicons. We

found that the more comprehensive lexicons can dramatically improve the performance

of downstream models, but realizing those gains requires calibrating the lexicons to

remove irrelevant or ambiguous words. This can be done by manually inspecting and

filtering the lexicons or in an automatic fashion with a small amount of labeled data.

Both cases require significantly less efforts than manually annotating the lexicons from

scratch. Moreover, this also reduces the amount of work required from domain experts —

even the manual calibration can, for the most part, be done with just common sense by

discarding irrelevant and non-sensical words. We should note that in these experiments

we focused exclusively on using lexicons to build predictive models; in practice, however,

these resources can also be used to search and filter for relevant content but this would

be more difficult to evaluate objectively.
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USER-LEVEL AND

CONTEXTUALIZED MODELS

Social Media Analysis research and applications have been mostly focused on

inference models operating over the contents of individual posts. Nevertheless, for

many applications it is critically important to characterize the users involved in

the communications. Furthermore, the ability to complement document-level models with

user information can help alleviate the problem of lack of context caused by the brevity

and spontaneity of social media. This is particularly relevant for more ambiguous and

nuanced communications, for instance involving sarcasm and other types of figurative

language, where contextual information plays a pivotal role.

The main contributions of this chapter are two-fold: first, we introduce User2Vec,

a novel neural language model that leverages the prior posts of social media users to

estimate representations that, similarly to word embeddings, capture latent aspects and

encode similarities as vector distances (Section 5.1). We then exploit the embeddings

to derive specialized user-level models with our low-resource neural network approach.

These models were evaluated over a mental-health inference task, aiming to discriminate

between Twitter users affected with depression or PTSD from matching controls, given

their social media posting histories (Section 5.2).

Second, we leverage the user embeddings to derive Content and User Embedding
Neural Networks (CUE-NN), a novel family of deep neural networks that combine repre-

sentations of the content and of the author of a post, to support contextualized inferences
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over social media. The contents are represented with high-level features extracted with

a set of convolutional filters, and the authors are represented with their respective

user embeddings. The evaluation was conducted over a sarcasm detection task (Section

5.3). Finally, we examined the user embeddings in more detail. First, we investigated

what kinds of information are being captured and encoded in these representations (e.g.

political leanings); second, we systematically evaluated the embeddings ability to capture

homophilic relations (Section 5.4).

5.1 Learning Neural User Embeddings

The general approach to learn unsupervised word embeddings entails associating words

with parameter vectors, which are then optimized to predict other words that occur

in the same contexts (Goldberg, 2016). Essentially, these methods rely on the distribu-

tional hypothesis to infer the latent semantics of words (Harris, 1954). For example, the

widely popular Skip-Gram model operationalizes this approach by sliding a window of

a pre-specified size across texts — at each step, the center word is used to predict the

probability of one of the surrounding words, sampled proportionally to the distance to the

center word (Mikolov et al., 2013a). Le and Mikolov (2014) later expanded this approach

with Paragraph2Vec, introducing two methods to learn representations for paragraphs

(or, more generally, sequences of words) — (i) PV-DM, which tries to predict the center

word of the sliding window, given the surrounding words and the paragraph (i.e., their

respective embeddings); and (ii) PV-DBOW, which tries to predict the words in a sliding

window within a paragraph, conditioned only on the respective paragraph embedding.

We hypothesize that user embeddings can also be learnt with a neural language modeling

approach, i.e. associating users with parameter vectors, and optimizing these to accu-

rately predict observable attributes or the words used in previous posts written by said

user. We hope that, similarly to word embeddings, the resulting representations encode

interesting latent personal aspects and capture a soft notion of homophily, implying that

similar users are embedded in nearby regions of the vector space.

5.1.1 User2Vec

We now describe our approach to infer generic user embeddings from posting histories.

The idea is to capture the relations between users and the written content they generate,

by modeling the probability of observing a sequence of words conditioned on the respective
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author. More formally, let U be a set of users, C j be a collection of posts authored by user

u j ∈ U , and d = {w1, . . . ,wN } be a post composed of words wi from a vocabulary V . The

goal is to estimate the parameters of a user vector u j, that maximize the conditional

probability

P(C j|u j)∝
∑

d∈C j

∑
wi∈d

logP(wi|u j)(5.1)

However, directly estimating these quantities (e.g., with a log-linear model) would

require calculating a normalizing constant over a potentially large number of words, a

computationally expensive operation. Because we are only interested in the user vectors

u j and not the actual probabilities, we can approximate the term P(wi|u j) by minimizing

the following Hinge-loss type objective

L(wi,u j)=
∑

w̃k∈V
max(0,1−ei ·u j + ẽk ·u j)(5.2)

where word w̃k (and associated embedding, ẽk) is a negative sample, i.e. a word not

occurring in the post under consideration (authored by user u j). In the aggregate, such

words are less likely to be employed by user u j than words observed in sentences

he or she has authored. In other words, we approximate the objective function by

learning to discriminate between observed positive examples (sampled from the true

distribution) and pseudo-negative examples (sampled from a large space of predominantly

negative instances), thus shifting probability mass to plausible observations1. Intuitively,

minimizing this objective attempts to induce a representation that is discriminative with

respect to word usage.

Notice that we represent both words and users via e-dimensional vectors — word

vectors, ei ∈Re which are assumed to have been pre-trained via some neural language

model; and user vectors u j ∈Re to be learned. We will refer to this approach as User2Vec2.

Furthermore, we note that barring some minor operational differences, this model is

equivalent to the PV-DBOW variant of Paragraph2vec (if users are viewed as paragraphs).

The key differences are that: (i) User2Vec predicts all the words in a post, whereas PV-

DBOW slides a window along the paragraph and only predicts one word per step; and (ii)

User2Vec assumes that the word embeddings are pre-trained, whereas PV-DBOW aims

to jointly learn the word and paragraph vectors.
1See Dyer (2014) for notes on Negative Sampling and Noise Contrastive Estimation
2This formulation is a simplification of Amir et al. (2016c) model. Specifically, we omitted a term in

Eq.5.1, encoding the marginal probability of S; and we allow the negative samples to be drawn from all
the words in V . These simplifications dramatically reduce training time without significant loss of quality
on the resulting embeddings.
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5.2 User-level Models

In this section, we capitalize on the user embeddings to extend our low-resource neural

network approach to support specialized user-level models.

Let D = {(u(1), y(1)), . . . , (u(N), y(N))} be dataset associating users u ∈U to labels y ∈Y ,

and U ∈ Re×|U | be an user embedding matrix representing a set of users U , as e-

dimensional vectors. We leverage the NLSE architecture to formulate a neural proba-

bilistic classifier, that given user u represented as a one-hot vector x ∈ {0,1}|U | estimates

a distribution over labels Ŷ , as

P(Ŷ |u;θ)∝W ·φ(x)

φ(x)=σ(H ·U ·x)

where σ(·) is a sigmoid non-linearity, W ∈R1×s denote the model weights, and H ∈Rs×e is

an embedding subspace projection matrix that learns more nuanced and task-specific

representations.

5.2.1 Evaluation: Depression and PTSD on Twitter

We evaluated our user-level classifiers over a mental-health prediction task, using a

self-reported dataset created for CLPysch 2015, a workshop aiming to foster progress in

NLP technologies related to mental health analysis over social media streams (Mitchell

et al., 2015; Coppersmith et al., 2015b). The dataset comprises users that have publicly

stated on Twitter to have been diagnosed with depression (327 users) or PTSD (246

users), and an equal number of randomly selected demographically-matched users as

controls. For each user, the associated metadata and posting history was also collected

— up to the 3000 most recent tweets, per limitations of the Twitter API3. The goal was

then to automatically discriminate between users affected by depression or PTSD from

matching controls, given their Twitter data. It should be noted that we did not participate

in this shared task and thus could not obtain the official test data. For this reason, our

results are not directly comparable to those reported by the participating teams. We did,

nevertheless compare our approach with most proposed methods for this task, none of

which was based on neural user representations.

We compared the performance of NLSE classifiers based on embeddings estimated

with the User2Vec and Paragraph2vec models
3This data was collected according to the ethical protocol of Benton et al. (2017), and follows the

recommendations spelled out in Mikal et al. (2016). For more details on the construction and validation of
the data, see (Coppersmith et al., 2015b, 2014a,b).
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• U2V@NLSE: NLSE model with user embeddings obtained with the User2Vec
model

• PV-DM@NLSE: same as above but with embeddings obtained with Paragraph2vec’s

PV-DM model

• PV-DBOW@NLSE: same as above but with embeddings obtained with Para-
graph2vec’s PV-DBOW model

against linear classifiers using textual features based on

• BOW: bag-of-words vectors with binary weights, d ∈ {0,1}|V |;
• BOE: bag-of-embeddings. Leveraging the Skip-Gram embeddings we built vectors,

d=∑
w Ew;

• LDA: bag-of-topics. We induced t = 100 topics using Latent Dirichlet Alloca-

tion (Blei et al., 2003), to build vectors d ∈ {0,1}t indicating the topics present

in user’s posts;

• BWC: bag-of-word-clusters. We induced k = 1000 Brown et al. (1992) word clusters,

to build vectors d ∈ {0,1}k mapping words in a user’s posts to their respective

clusters;

• U2V: user embeddings obtained with the user2vec model

• PV-DM: user embeddings obtained with Paragraph2vec’s PV-DM model

• PV-DBOW: user embeddings obtained with Paragraph2vec’s PV-DBOW model

5.2.2 Experimental Setup

We first preprocessed all tweets with the conventional normalization steps and discarded

users with fewer than 100 tweets. To learn User2Vec embeddings, we first pre-trained

a set of Skip-Gram word vectors from a large unlabeled corpus comprising the task

data and an additional set of 53 Million tweets. Next, for each user u j ∈U , we sampled

a held-out set H j ⊂ C j with 10% of the posting history. The rest of the data was used to

estimate an embedding u j, by minimizing Eq. 5.1 via SGD and using P(H j|u j) as the

early stopping criteria. Skip-gram and Paragraph2Vec vectors were estimated using the

Gensim python package (Řehůřek and Sojka, 2010). To ensure a fair comparison, we kept

the hyper-parameters consistent across all the models, which were set as follows: window

size w = 5, negative sample size s = 20 and vector size d = 400.

The classification experiments were conducted with 10-fold cross-validation methodol-

ogy, keeping the same partitions across all the baselines. For each partition, the training

split was divided into 80%/20% train/validation sub-splits to facilitate hyper-parameter
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selection and early-stopping. We performed grid-search to choose the best `2 regulariza-

tion coefficient, over the range C = {1e−4,1e−3,1e−2,1e−1,1,10} , for the linear models;

and the optimal subspace size S = {10,15,20,25} and learning rates λ= {0.01,0.1,0.5,1},

for the NLSE model.

5.2.3 Results

The classifiers were mainly evaluated with respect to the macro average F1. We also

report results in terms of binary F1, where we only average the scores for the depression

and ptsd classes. This allows us to better ascertain the ability of the models to discrimi-

nate between mentally afflicted patients, which are less prevalent than the controls, but

are the cases that we mostly care about. The main classification results are shown in

Figure 5.1. The first thing to note is that the BOW is a very strong baseline, essentially

outperforming all the other linear classifiers based on textual features and generic user

embeddings. One reason is that users affected with mental illnesses, often talk about

their conditions (whereas healthy users do not generally talk about such issues) and the

BOW model can easily pick-up on such clues.

Regarding the user embeddings, we found that, despite being similar, the PV-DBOW

performed much worse than the U2V, showing that better embeddings can be obtained by

trying to predict all the words in users posts, and leveraging pre-trained word vectors. On

Figure 5.1: Predictive performance of different models at discriminating users with
respect to mental condition, in terms of F1 and binary F1

.
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the other hand, the PV-DM model has a performance comparable to that of the U2V. Note

also that these representations perform much better than the word embedding baselines,

thus showing that the user embeddings capture more than the sum of their parts, i.e. the

individual word (embeddings). Finally, we observe that the task-specific representations

obtained via subspace projection outperform all the other baselines by a fair margin. Note

also that the NLSE approach is particularly better at discriminating the minority classes,

i.e., patients with depression and ptsd, as evidenced by the greater improvements

in binary F1, when compared to the other baselines. These results demonstrate that

neural user embeddings induced from previous postings can indeed inform downstream

predictive models and be leveraged to build specialized SMA applications in low-resource

settings.

5.3 Contextualized Models

In this section, we leverage the user embeddings to derive a novel family of predictive

models to support contextualized and personalized inferences over social media. The goal

here is to capture both the relevant aspects of the content and the relevant contextual
information about the author of a post. More formally, we are interested in models of the

form P(Y |d,u)= fθ(g(d), z(u)) that given a post d authored by user u, make predictions

with basis on representations of the contents g(d), and representations of the author

z(u).

5.3.1 Content and User Embedding Neural Networks

Assuming we have a user embedding matrix U ∈Re×|U |, where each column represents

a user u ∈U as a e-dimensional vector, we can simply map the author of a post to the

corresponding embedding z(u)=Uu. To represent the content, we use pre-trained word

embeddings as the input to a convolutional layer that extracts high-level features. The

input to this layer is a document matrix

(5.3) D=


e1
...

em


obtained by selecting the embeddings corresponding to words in d from an embedding

matrix E ∈Re×|V |. The convolutional layer is composed of a set of filters F ∈Re×h, each
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of which slides across the input, extracting h-gram features to generate a feature map

m ∈R|d|−h+1, where h is the filter height. Individual entries in this map are computed as

(5.4) mi =α(F ·D[i:i−h+1] +b)

where D[i: j] denotes a sub-matrix of D (from row i to row j), b ∈ R is an additive bias

and α(·) denotes an element-wise non-linearity, which we set to be the Rectified Linear
Unit activation function (Nair and Hinton, 2010). The resulting feature map is then

transformed into a scalar with a max-pooling operation, i.e., we extract the largest value

in the map. We use 3 filters (with varying heights) each generating M feature maps which

are then reduced to a single vector fk = [max(m1) ⊕max(m2) . . .⊕ max(mM)], where ⊕
denotes concatenation. Finally, the output of all the filters is combined to form the final

representation g(d)= [f1 ⊕ f2 ⊕ f3].

The model, which we will refer as Content and User Embedding Convolutional Neural
Network (CUE-CNN) then induces a probability distribution over target labels, given a

post d from user u as

P(Y |d,u;θ)∝W ·φ( g(d)⊕ z(u) )+b

φ(x)=α(H ·x)
(5.5)

where g(·) denotes the activations of a hidden layer capturing non-linear interactions

between the content and context representations, and θ = {W,b,H,h,F1,F2,F3,E,U}

are parameters to be estimated during training. Here, W ∈ R|Y |×z and b ∈ R|Y | are the

weights and bias of the output layer; H ∈ Rz×3M+t are the weights of the hidden layer.

Similarly to the NLSE model, the hidden layer imposes a dimensionality reduction of

the representations space which forces the model to learn more discriminative features.

In this case, the projection also allows the model to capture the interactions between the

content and user representations. See Figure 5.2 for an illustrative schematic depicting

this approach.

5.3.2 Evaluation: Sarcasm Detection

We evaluated the CUE-CNN model over a sarcasm detection task with the experimental

setup and (a subset of) the dataset described by Bamman and Smith (2015). The dataset

consists of tweets with self-declarations of sarcasm, i.e., a tweet is considered sarcastic if

it contains the hashtag #sarcasm or #sarcastic and deemed non-sarcastic otherwise.4

4Note that this is a form of noisy supervision, as not all sarcastic tweets will be explicitly flagged as
such.

82



5.3. CONTEXTUALIZED MODELS

Figure 5.2: Illustration of the CUE-CNN model for contextualized inferences over social
media.

To comply with Twitter terms of service, we were given only the tweet ids along with

the corresponding labels and we also did not have access to the historical user tweets

collected by Bamman and Smith, thus we had to collect the data ourselves. However, by

the time we tried to retrieve the data some of the messages and users were no longer

available, therefore we discarded messages for which no contextual information was

available. Then, we scrapped up to the 1000 most recent historical tweets per user5,

resulting in a corpus of 11,541 tweets involving 12,500 unique users (authors and

mentioned users).

Regarding the baselines, we evaluated the performance of a content based Convo-

lutional Neural Network as described by Kim (2014) (CNN) as well as the NLSE and

BOE baselines used in the previous experiments. We also reimplemented Bamman and

Smith (2015)’s sarcasm detection model consisting of a logistic-regression classifier that

exploits rich feature sets to achieve strong performance. These are detailed at length in

the original paper, but we briefly summarize them here:

• local-features, encoding attributes of the target tweet text, including: uni- and

bi-gram bag of words (BoW) features; Brown et al. (1992) word clusters indicators;

unlabeled dependency bigrams (both BoW and with Brown cluster representations);

5The original study Bamman and Smith (2015) was done with at most 3,200 historical tweets. It
should also be noted that in some cases our historical tweets were posted after the ones in the corpus used
for the experiments.
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part-of-speech, spelling and abbreviation features; inferred sentiment, at both the

tweet and word level; and ‘intensifier’ indicators.

• author-features, aimed at encoding attributes of the author, including: histor-

ically ‘salient’ terms used by the author; the inferred distribution over topics6

historically tweeted about by the user; inferred sentiment historically expressed by

the user; and author profile information (e.g., profile BoW features).

• audience-features, capturing properties of the addressee of tweets, in those

cases that a tweet is directed at someone (via the @ symbol). A subset of these,

duplicate the aforementioned author features for the addressee. Additionally, au-

thor/audience interaction features are introduced, which capture similarity be-

tween the author and addressee, w.r.t. inferred topic distributions. Finally, this

set includes a feature capturing the frequency of past communication between the

author and addressee.

• response-features, for tweets written in response to another tweet. This set of

features captures information relating the two, with BoW features of the original

tweet and pairwise cluster indicator features, which the encode Brown clusters

observed in both the original and response tweet.

We emphasize, however, that implementing these features took considerable time

and effort, thus motivating our approach to effectively induce contextually-aware repre-

sentations without manual feature engineering. Finally, we conducted ablation studies

to ascertain the relative contributions of specific components of our model.

5.3.3 Experimental Setup

We first preprocessed the training data and induced word and user embeddings as

described in Section 5.2.2. Similarly to other deep neural networks, our model can be

operationalized with different architectures and hyperparameter configurations which

strongly influence the models behavior (and performance). However, finding the optimal

hyperparameter settings would require an extensive search over a very large config-

uration space. Therefore, following Zhang and Wallace (2015)’s recommendations, we

focused our search over combinations of dropout rates D = [0.0,0.1,0.3,0.5], hidden layer

sizes Z = [25,50,75,100], filter heights H = [(1,3,5), (2,4,6), (3,5,7), (4,6,8), (5,7,9)], and

number of feature maps M = [100,200,400,600].

6The topics were extracted from Latent Dirichlet Allocation Blei et al. (2003).
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The experiments were conducted with a 10-fold cross-validation methodology, keeping

the same partitions across all the baselines. For each partition, the training split was

divided into 80%/20% train/validation sub-splits to facilitate hyper-parameter selection

and early-stopping. We performed grid-search to choose the best `2 regularization coeffi-

cient, over the range C = [1e−4,1e−3,1e−2,1e−1,1,10] for the linear models; and randomly

sampled (without replacement) n = 50 hyperparameter configurations for our model. The

model parameters were estimated by minimizing the cross-entropy error between the

predictions and true labels, the gradients w.r.t to the network parameters were computed

with backpropagation (Rumelhart et al., 1988) and the model weights were updated with

the AdaDelta rule (Zeiler, 2012).

5.3.4 Results

In Figure 5.3, we show the performance of linear classifiers with each of the manually

engineered feature sets proposed by Bamman and Smith (2015), along with scores re-

ported in the original paper. These results confirm Bamman and Smith (2015) findings

about the need for contextual information for sarcasm detection and validate our reim-

plementation of their model. Despite the slight differences caused by the fact the we are

using a different dataset, we observe the same general trends: namely, that including

contextual features significantly improves the performance, and that the biggest gains

are attributable to features encoding information about the authors of tweets.

The main classification results are shown in Figure 5.4. Once again, we find that

modeling the context (in this case, solely the author) of a tweet yields significant gains in

accuracy. The difference is that here the model jointly learns appropriate user represen-

tations, lexical feature extractors and, finally, the classification model. Interestingly, we

observed that our proposed model not only outperforms all the other baselines, but also

shows less variance over the cross-validation experiments which attests to its robustness.

The ablation studies showed that pre-training the user embedding improves model

performance, which was expected and in line with the literature. We further observed

that it is beneficial to introduce a hidden layer capturing the interactions between the

context (i.e., user vectors) and the content (lexical vectors). This is intuitively agreeable:

the recognition of sarcasm is possible when we jointly consider the speaker and the

utterance at hand. Finally, we note that Bamman and Smith also reported gains by

including information about the audience of a post (albeit small), which suggests that

further improvements can still be realized by this model.
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Figure 5.3: Predictive performance of linear classifiers with Bamman and Smith (2015)
contextual features for sarcasm detection. We include the original results as a reference,
and note that the discrepancies between their reported results and those we achieved
with our re-implementation reflect the fact that their experiments were performed using
a significantly larger training set and more historical tweets than we had access to.

Figure 5.4: Predictive performance of neural models for sarcasm detection and ablation
studies for the CUE-CNN model. We compared simple neural architectures that only
consider the lexical content of a message with architectures that explicitly model the
context (i.e. the author).
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5.3.5 Personalized Predictions

To better understand the influence of contextual information on the predictions of

the CUE-CNN model, we measured the responses to the same textual content with

different hypothetical contexts (authors). We specifically selected two examples that

were misclassified by a simple CNN operating only on the contents of a post and ran

them through our CUE-CNN with three different user embeddings (that is, simulating

scenarios where the posts were written by different users). In Figure 5.5, we show these

examples along with the predicted probabilities of the post being sarcastic when: no user

information is considered and when different authors are considered. We can see that

the predictions drastically change when contextual information is available and that

two of the authors trigger similar responses on both examples. This provides evidence

that our model captures the intuition that the same utterance can be interpreted as

sarcastic or not, depending on the speaker, and also hints at the fact that the model can

exploit user similarities to inform predictions (which might help with the generalization

of the model). This ability to tailor the responses to an input based on the author opens

the door for personalized models that combine general knowledge about a phenomena

with the peculiar characteristics of a specific individuals, e.g. to support applications

delivering personalized/specialized health-care.

Figure 5.5: Two sarcastic examples that were misclassified by a simple CNN (no user).
Using the CUE-CNN with contextual information drastically changes the model’s predic-
tions on the same examples.
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5.4 User Embedding Analysis

Thus far, we have seen that neural user embeddings provide an effective approach

to exploit unlabeled data and can directly inform user-level models or complement

document-level models with contextual and personal information. In this section, we

examine these representations in more detail. We know that word embeddings encode

latent semantic attributes of words and express word similarities as vector distances —

indeed, we already leveraged these properties explicitly to expand subjective lexicons.

But what kinds of information are being captured by user embedding representations?

It would be reasonable to expect that they capture latent personal attributes, in which

case vector similarities could be interpreted as encoding homophilic relations between

users, naturally implying that similar users should have similar representations. The

interpretation of such relations largely depends on the specific domain or application but

this mechanism in itself could enable interesting applications. For example, epidemiology

systems could leverage user embeddings to recognize and characterize risk groups on

social media by identifying individuals that ‘look’ like other patients known to be affected

by some illness7 (e.g. depression). This would in turn potentially enable scalable, real-

time estimates concerning the prevalence of specific public health issues in particular

sub-populations.

As we have seen before, one way to (indirectly) infer the latent properties encoded

in embedding spaces is to project the respective the high-dimensional vectors into a

two-dimensional space. Visualizing the structure of the resulting space (i.e. the relative

positions of the vectors) provides clues about those properties, e.g. if the vectors of

users affected with some mental illness are close, then they must have similar values

along some dimensions, which implies that these dimensions carry information about

said condition. While this approach offers a quick and intuitive way of discovering

qualitative properties of those spaces, it also has several limitations: first, projecting high-

dimensional objects into a lower-dimensional space always implies a loss of resolution,

which might lose nuanced information; second, dimensionality reduction algorithms have

specific assumptions and parameters which can introduce external biases or artifacts,

thereby influencing the results; and third, this approach can not be used to quantify

the relations between objects, nor objectively compare different embedding algorithms8.

Therefore, we investigated the embeddings ability to capture homophily with a more

7In some cases this might be more informative than a hard classification
8These same limitations motived researchers to find better ways to evaluate unsupervised word

embeddings, e.g. with word analogy tasks (Mikolov et al., 2013c)
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systematic and quantitative approach based on explicit measures of vector similarity.

5.4.1 Latent Personal Aspects

Figure 5.6 shows a T-SNE projection (Van der Maaten and Hinton, 2008) of the embed-

dings induced in Section 5.2 for the mental-health experiments, colored according to the

respective cohort. We observe that even generic embeddings induced without any label

information can, to some extent, capture mental-health related information. Notice that

at a local level, the user vectors tend to be surrounded by others corresponding to users

in the same cohort. Moreover, we can see that the tailored capture more fine-grained

information thus yielding much more discriminative representations with respect to the

target labels (i.e. mental health condition).

In Figure 5.7 we show plot the user embeddings induced in Section 5.3 for the

sarcasm detection experiments, colored according to their apparent political leaning and

according to their interest in sports. These attributes were inferred using the Twitter

accounts that a user follows, as a proxy. For the former, we considered users that follow

at least one the following (democrats) accounts: @BarackObama, @HillaryClinton and

@BernieSanders; or one of the following (republicans) accounts: @marcorubio, @tedcruz
and @realDonaldTrump. For the latter, the 500 most popular accounts (according to the

authors in our training data) were manually inspected and 100 sports related accounts

were selected, e.g., @SkySports, @NBA and @cristiano. We can observe that users with

similar political leanings (or that are similarly interested in sports) tend to have similar

vectors. As we can see, these representations are able to capture a wide range of personal

attributes from private mental states to personal preferences and affiliations.

5.4.2 Measuring Homophily

To investigate and quantify the extent to which learned user embeddings are able to

capture homophily relations, we proceeded as follows. First, we considered each user in

the corpus in turn as a ‘query’ with which to retrieve similar users; then, we calculated

cosine similarities between the query user vector and the vectors associated to all other

users, thereby inducing a similarity-based ranking. Intuitively, we would hope to see that

individuals in the same mental health categories as the query user are comparatively

similar to one another: e.g., users affected by depression should be most similar to other

users also suffering from depression.
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Figure 5.6: User embeddings projected into two dimensions, and colored according to
mental-health status. The plot shows the U2V embeddings on the right-hand side and
U2Vsub on the left-hand side.

Figure 5.7: User embeddings projected into two dimension, and colored according to
personal preferences. The left-hand side plot shows the vectors of users colored according
to the politicians they follow on Twitter: the blue circles represent users that follow
at least one account from a democratic politician; the red circles correspond to users
that follow at least one account of a republican politician. Users that follow both parties
were excluded. On the right-hand side, we show a plot of user vectors colored with
respect to the likelihood of following a sports account. We discarded users for which the
probabilities lied in the range between 0.3−0.7 to emphasize the extremes.

We induced these rankings for all the user embedding models used in Section 5.2.2

(i.e., PV-DBOW, PV-DM and U2V) and evaluated them with respect to the Receiver

Operating Characteristic (ROC) curves and the average Area Under the Curve (AUC).

We found that all the embeddings perform significantly better than chance; the rankings
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obtained average AUC scores of 0.56, 0.57 and 0.59, respectively. These results suggest

that learned user embeddings do indeed capture signals relevant to mental health,

if only weakly. Nonetheless, we believe this is somewhat surprising, given that these

are unsupervised, generic representations that were in no way explicitly trained to

capture attributes of mental health. Regarding the tailored embeddings, we found

that they substantially improve the quality of the induced rankings bumping up the

average AUC to 0.69, 0.68 and 0.79, respectively. These refined representations greatly

improve performance overall, and particularly with respect to discriminating controls

from unhealthy users, suggesting that the induced subspace captures more fine-grained

signal related to mental statuses. Figure 5.9 and Figure 5.8 present the results obtained

with the U2V vectors. The top plots show the induced similarity rankings, where each

a – User vector similarity ranking. The first row corresponds to a ’query’ user, and the columns show the
top 100 most similar users, colored according to their class.

b – ROC curves of the induced user similarity rankings, per class. Each line represents the curve of a user
and the thicker line shows the average ROC

Figure 5.8: Measuring homophilic relations with respect to mental-health status with
vector distances over the (generic) user embedding space
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a – User vector similarity ranking. The first row corresponds to a ’query’ user, and the columns show the
top 100 most similar users, colored according to their class.

b – ROC curves of the induced user similarity rankings, per class. Each line represents the curve of a user
and the thicker line shows the average ROC

Figure 5.9: Measuring homophilic relations with respect to mental-health status with
vector distances over a domain-specific embedding subspace

column includes the top k = 100 most similar users to the query user (first row), colored

according to the respective class. The bottom plots show the respective ROC curves under

the induced rankings.

5.5 Conclusions

This chapter extended our low-resource neural networks to user-level and contextualized

models, with novel methods to automatically induce and exploit embedding representa-

tions for social media users. To that end, we first introduced User2Vec, a neural language

model to estimate user embeddings from a user’s collection of previous posts. Similarly

to word representations, the user embeddings can also be used directly as features to
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inform predictive models, which allowed us to build specialized user-level models using

the NLSE architecture. Unlike other approaches that explicitly exploit the structure

of particular social media services, such as the forum where a message was posted or

metadata about the users, learning user embeddings only requires their preceding mes-

sages — yet, the obtained vectors are able to capture relevant user attributes and a soft

notion of homophily. This makes our model easier to deploy over different social media

environments. The models were evaluated over a mental-health inference task aiming to

discriminate between users diagnosed with depression or PTSD, from demographically

matched controls. The results showed that our models outperform linear baselines based

on lexical features and other user representations. The experiments also demonstrated

that our user embeddings do capture mental health related signals and user similarities

with respect to mental health condition, despite being trained without this informa-

tion. This is in agreement with prior results from the field of psychology, establishing

connections between word usage and mental status (Pennebaker et al., 2001). On the

other hand, we found that the embeddings can be tailored, with a small amount of

task-specific labeled data, to capture more granular information thus improving the

quality of downstream models and applications.

Second, we leveraged the user embedding approach to derive a novel family of neural

networks to support the deployment of contextualized models without manual feature

engineering. The CUE-CNN models jointly learn and exploit representations for the

content and the author of a post, thereby integrating information about what was said

and who said it. The evaluation conducted over sarcasm detection — a task that crucially

depends on contextual information — showed that our models outperform a recently

proposed state-of-the-art sarcasm detection model based on an extensive set of hand-

crafted features encoding user attributes and other external information. Furthermore,

the ability to capitalize on user embeddings to support personalized inferences, opens the

door to new deployment strategies for models that can be trained over (potentially large)

external datasets and then fine-tuned to specific users by incorporating their personal

embeddings. This can find applications even outside the realm of social media analysis,

for example, similar methods could be used to adapt conversational agents or personal

digital assistants to different users.
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AGILE SOCIAL MEDIA ANALYSIS

This chapter concerns with the more practical aspects of deploying social media

analysis systems in the real world. First, the methods developed in this thesis

are transposed into an agile modeling framework to accelerate the development

of specialized models for various applications (Section 6.1). Reducing the efforts of model

development allows us to build more complex SMA applications. Thus, this framework

is leveraged to operationalize a methodology to conduct demographically controlled

analyses. To that end, a process is developed to automatically collect, process and organize

social media data, such that it can subsequently be used to sample demographically

representative digital cohorts of social media users (Section 6.2). Conducting studies

over these cohorts allows analysts to take into account the biases of social media data,

thereby improving the quality of these studies.

The tools and methodologies introduced in this thesis are then validated in a case-

study of real-world demographically controlled agile social media analysis. The study

consisted of the development of DEMOS, a Digital Epidemiology and Mental-Health

Observation System, to track discussions around specific public health issues and monitor

the prevalence of mental illnesses over Twitter data (Section 6.3). To evaluate the system,

we created a digital cohort of US Twitter users and conducted a series of pilot studies

regarding the discussion around public health related topics, such as contraception,

pregnancy and heart disease. Then, we used DEMOS to estimate the prevalence of the

depression and PTSD in the cohort and investigate how these mental-illnesses affect

different demographic groups.
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6.1 Agile Modeling Framework

As we discussed before, the major bottleneck of deploying SMA systems is the develop-

ment of NLP models tailored for specific tasks. To address this problem, the previous

chapters developed a methodology to induce low-resource neural networks to ease the

induction of specialized NLP models for social media. The key idea is to separate model

development in two steps: (i) unsupervised learning of generic neural embeddings for

words and users, thereby complementing small labeled datasets with large amounts of un-

labeled data; and (ii) inducing task-specific models by extracting tailored representations

from the generic embeddings, thus eliminating the need for feature engineering. This

allows us to reap the benefits of neural representation learning without paying the usual

costs of these methods, thus providing a middle ground between feature engineering and

deep learning approaches to build specialized models.

Decoupling the process of learning generic and specialized representations allows

the same embeddings to be reused and adapted for different applications with a small

amount of task-specific labeled data. It also helps to expedite the development process

by allowing analysts to pre-train embeddings offline, potentially with massive datasets,

and then leverage them to quickly build tailored models. Word embeddings are one of

the key elements of this approach — these can be used directly as the model input but

are also instrumental to learn user and document embeddings that serve as input for

other models. However, this approach makes no assumptions about what the embeddings

represent nor how they were computed, thus providing leeway for various types of models

to be built, such as:

• Document-level models, which take word embeddings as input and operate over

the contents of an entire document (as described in Chapter 3);

• Word-level models, which take word embeddings as input and infer attributes

of specific words — these models can be used to automatically induce large scale

lexicons tailored for social media (as described in Chapter 4);

• User-level models, which take user embeddings as input and make inferences

with respect to individual users (as described in Chapter 5);

• Contextualized models, which combine document and user embeddings, thereby

taking into account characteristics of the contents and of the context of a document,

to make inferences over ambiguous documents (as described in Chapter 5).
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This methodology can be transposed into an agile modeling framework, depicted in

Figure 6.1, to accelerate the deployment of SMA applications by:

• addressing the fundamental challenges of processing subjective social media (i.e.,

the noise, brevity and lack of context);

• reducing manual data annotation and feature engineering efforts;

• reusing and adapting pre-existing linguistic tools and resources.

All the models and tools that were developed to operationalize this framework have been

made publicly available1. Reducing the efforts of building NLP models for social media

will allow analysts to quickly build models for unexpected and time-sensitive applications;

or redirect those efforts to build more sophisticated systems for more complex and robust

analyses. The rest of this chapter leverages this framework to improve the validity of

indicators extracted from social media.

6.2 Demographically Controlled Social Media
Analyses

Social media is a valuable data source but it is also inherently noisy and biased. On the

one hand, the universe of users of any given social web platform is not a representative

sample of the general population (e.g. urban young adults tend to be overrepresented).

On the other hand, these platforms serve multiple purposes and host content created

by billions of users, some of which correspond to individual citizens but others belong to

organizations, brands, media outlets, celebrities and social bots, among others. Therefore,

the trends or insights gleaned from these data might not be generalizable to the wider

public. Yet, the data collection strategies of current SMA methodologies assume that

all the data about a topic is equally relevant for the analysis. Moreover, the lack of

contextual information about the data can obfuscate the complexities and nuances of

the topic of investigation and distort the interpretations. Consequently, current SMA

approaches can only capture general trends, but fail to provide insights as to why said

trends are observed. Fortunately, this problem (known as selection bias) is hardly new

and hence it can be addressed with well-established techniques that are routinely used

in polling and survey-based research. Specifically, probability sampling strategies that

1http://github.com/samiroid/ASMAT
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Figure 6.1: Schematic depiction of the proposed agile modeling framework based on
low-resource neural networks. The framework exploits large amounts of unlabeled data
to learn neural representations, which are then adapted to derive specialized models.
These representations can be re-used and shared across various models, thus helping to
expedite the deployment SMA applications.

serve as the basis for the validity of survey research, can also be used to improve the

validity of social media based studies.

We can replicate universally accepted approaches in survey research by conducting

studies over demographically representative samples of social media users, instead of

analyzing all the data related to a given topic, as it is typically done. Leveraging repre-

sentative cohorts sampled before conducting the analyses can help to ameliorate both

the selection bias and confirmation bias problems. This in turn will allow social media

analysts to produce externally valid results concerning national trends, from inherently

biased samples and extrapolate findings to a broader population. Similar strategies have

already proven to be effective for online surveys, which can have comparable validity to

other survey modalities simply by controlling for basic demographic features such as the

location, age, ethnicity and gender (Duffy et al., 2005). Furthermore, the demographic

information will enable analysts to begin answering questions regarding not just the
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‘what’ but also the ‘who’ of social media discussions, that is, what types of people discuss

which topics, and how these vary by demographics.

6.2.1 Building a Digital Cohort

Herein, we propose a methodology to collect, process and organize social media data,

such that it can subsequently be used to sample representative digital cohorts for social

media studies. This methodology consists of the three following main steps:

1. Data Collection: The first step is to create a large database of social media

accounts from which to draw candidate cohort members, while excluding accounts

that are inactive or that belong to corporations, spammers and bots. Then, for each

cohort candidate, collect and store their publicly available profile information and

the respective post collection.

2. Demographic Inference: The second step entails enriching the candidates profile

information with key demographic attributes. While information regarding such

attributes on social media platforms might be inaccurate, outdated or simply

unavailable, research has shown these can, to some extent, be inferred using

statistical methods (Cesare et al., 2017). Therefore, this step requires collecting

and annotating data to train models that infer demographic attributes of users,

given their collection of posts, which can later be used to annotate the cohort

candidates with respect to these attributes.

3. Cohort Sampling: The third step consists of using adaptive randomization tech-

niques to select out a representative sample that matches a target demographic

distribution, thus minimizing the differences between cohort demographics and the

population of interest. These methods have been extensively studied and have been

shown to efficiently generate statistically indistinguishable cohorts (Rosenberger

et al., 2012).

This process can be easily automated to scale to arbitrarily large datasets and keep

the cohorts up-to-date with minimal maintenance efforts. As a result, the makeup of a

cohort can be easily changed at any given time to either improve representativeness or

respond to cohort changes, e.g. detecting when an account is closed and replacing these

members with others with similar demographic characteristics. Moreover, there are no

additional costs in adding more accounts or including difficult to reach groups (e.g. young
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adults), meaning that the costly and crippling problems of maintenance and attrition

in panel surveys can be dealt with trivially. In this respect, this approach is a major

departure from the way surveillance systems are usually maintained, where tremendous

resources are spent on locating, adding and maintaining study participation.

6.3 Case Study: Digital Epidemiology and
Mental-Health Observation System

This thesis aimed to address the main limitations of current approaches to deploy social

media analysis systems. The methods and techniques proposed thus far can now be

leveraged to improve over traditional SMA methodologies (as described in Section 2.4).

Thus, here we investigate the impact of conducting demographically controlled analyses
with specialized models, as described in Table 6.1. To validate this approach, this section

introduces a case-study of real-world social media analysis applied to public-health. The

main goals of this study are two-fold: first, assess the impact of leveraging demographic

information in social media studies; second, provide a proof concept of a SMA system

built with the methods introduced in this thesis. These methods were operationalized

in the development of DEMOS, a Digital Epidemiology and Mental-Health Observation
System, designed to track discussions around specific public health issues, and monitor

the prevalence of mental illnesses over Twitter data. The system provides a platform

for the rapid deployment of custom inference models allowing social media analysts

to conduct externally valid studies, vis-a-vis national trends or with focus on specific

demographic groups (e.g. urban black females). To evaluate the system we conducted two

pilot studies of demographically controlled public health surveillance over Twitter — the

first, measuring how different demographic groups engage with different health related

issues; and the second, investigates how mental illnesses affect different demographic

groups.

6.3.1 System Architecture

DEMOS was operationalized as a highly scalable, distributed data collection and pro-

cessing platform, implemented with state-of-the-art open-source packages for big data

analytics and deployed with cloud computing solutions. The system consists of two main

components: (i) a Digital Cohort Sampler module to collect and organize social media

data in a manner that supports the creation of demographically representative cohorts;
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Figure 6.2: Schematic depiction of DEMOS

and (ii) a set of Social Media Analysis Pipelines, which leverage natural language

processing methods to extract relevant properties of the data. Each pipeline consists of a

set of specialized models, deployed as a standalone RESTful web applications. This allows

the pipelines to be invoked asynchronously and the data to be processed in parallel. In

the current implementation DEMOS includes two such pipelines:

• Topic Detection Pipeline, consisting of a set of lexicon-based models built with

lexicons created by experts to identify posts discussing public health issues;

• Mental-Health Inference Pipeline, composed of a set of bespoke classifiers that

given a collection of user posts, estimate the probability of the user being affected

by a mental disease.

This modular architecture, depicted in Figure 6.5, enables analysts to easily tailor the

system for different of applications simply by plugging in (or removing) specific inference

models or pipelines, and allows the system to scale to large data volumes by adding

computation nodes.
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DATA COLLECTION
Goals Sample a demographically representative digital cohort of social media

users using the process described in Section 6.2

Validation The validation can be done automatically by specifying the target number
of samples and demographic composition, and then monitoring the data
collection process

Input Target sample size and demographic composition for the cohort

Output Demographically representative digital cohort of social media users

MODEL DEVELOPMENT
Goals Build analytics pipelines to support demographic inference and task-

specific inferences. The low resource neural networks described in the
previous chapters can be used to quickly build specialized models for
document-level (Chapter 3), word-level (Chapter 4) and user-level (Chap-
ter 5) inferences

Validation Measure model performance on a held-out dataset

Input Training data for each model

Output Analytics pipelines based on specialized models

DATA ANALYSIS
Goals Leverage demographic information to break down the results of the analy-

ses

Validation Manual inspection and interpretation of the trends gleaned from the
analysis

Input Raw signals inferred by the models

Output Plots showing stratified aggregations of the inferred signals

Table 6.1: Methodology for demographically controlled social media analyses with spe-
cialized models
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6.3.1.1 Digital Cohort Sampler

The Digital Cohort Sampler is responsible for implementing the cohort sampling method-

ology described in Section 6.2. This module consists of a database and a set of computation

nodes coupled with a distributed task management system, which allows computations

to be spread across a collection of servers. These nodes are responsible for executing

tasks such as crawling, processing and storing the data. The system is managed by

a task scheduler that invokes computation tasks periodically, which allows it to run

continuously and keep the datasets up-to-date with little manual maintenance. This also

allows the system to operate asynchronously and automatically detect and recover from

data inconsistencies or data loss, without direct communication/synchronization between

different components.

The data is collected by invoking the Twitter REST API, which returns tweets as

JSON-encoded objects containing the text and other metadata, including the information

about the author. The retrieved data is then stored using MongoDB, a free and open-

source document-oriented database management system. MongoDB was chosen because

it can naturally store JSON objects, scale to large datasets by distributing the data across

multiple servers, and it is schema-free, meaning that arbitrary information can be added

at any time (e.g. if new analytics are included or the existing models are updated). The

data is organized in two separate MongoDB collections2: a Tweets collection, storing

the raw tweet data; and a Users collection, storing the user information obtained from

Twitter as well as the annotations produced by the demographic inference pipeline.

The demographic inference pipeline, leverages automated methods to estimate labels

for the location, gender, age and race/ethnicity, of each candidate cohort member.

The location was inferred using Carmen, an open-source library for geolocating tweets

that uses a series of rules to lookup location strings in a location knowledge-base (Dredze

et al., 2013). The other attributes were inferred with bespoke supervised classifiers

induced with the agile modeling framework described in Section 6.1. The standard formu-

lation of race and ethnicity is not well understood by the general public, so categorizing

social media users along these two axes may not be reasonable. Instead, we used a single

measure of multicultural expression that includes five categories: White, Asian, Black,

Latino, and Other. Identifying age based on the content of a user can be challenging, and

exact age often cannot be determined based on language use alone. Therefore, we used

discrete categories that provide a more accurate estimate as to age: Teenager (below 19),

20s, 30s, 40s, 50s (50 years or older).
2MongoDB collections are equivalent relational database tables
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Figure 6.3: Cohort demographics

6.3.2 Data Collection

We leveraged DEMOS to conduct a series of pilot studies of demographically controlled

public health surveillance over Twitter data. To that end, we first constructed a digital

cohort by randomly sampling a set user accounts that are likely to be from the United

States from a stream of geolocated tweets. This resulted in a set of 58K users, which

were added to the system as cohort candidates. The data crawling process identified

48K active accounts belonging to users from the US and yielded a total of 120M tweets

with an average of 2,068 tweets per user (median of 2,790 and a standard deviation of

1,241). The cohort members were then processed through the demographic inference

pipeline, resulting in the composition shown in Figure 6.3. We can see that some de-

mographic groups are overrepresented (e.g. white individuals) while others are grossly

underrepresented (e.g. teenagers).

6.3.3 Model Development

The demographic inference and mental-health inference pipelines were operationalized

with the specialized user-level models described in Chapter 5. For the latter, we trained

independent classifiers for depression and PTSD using the mental-health analysis
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datasets described in the same chapter. Regarding the demographic inference, we used a

semi-automated procedure to construct the training dataset. First, we downloaded a set of

unique Twitter user profile pictures and respective posts (duplicate images were detected

with a min-Hash algorithm). Second, we used a deep Convolutional Neural Network for

face identification and classification to infer labels for the age, gender and race3, which

where mapped to the aforementioned categories. Users with images containing more

than one face or with no face were discarded, and the rest were associated with their

respective post collections. The advantage of this approach is that we can obtain a very

large set of labeled data at minimal cost and effort, allowing us to build more accurate

models. For this case-study, we collected a dataset of 5k users — Figure 6.4 shows the

label distribution for each demographic attribute. We can see that the demographics are

highly skewed towards white young adults, which further motivates the need to control

for demographic factors when conducting social media based studies.

All the models were trained and evaluated with the usual methodology, using

80%/20% train/test splits computed with stratified sampling to keep the original class

proportions. We compared the performance of our models to that of linear classifiers

with features based on bag-of-words (BOW), bag-of-word-embeddings (BOE), and user

embeddings (U2V). Figures 6.5 and 6.6 present the results in terms of the average F1

metric for the demographic and mental-health inference models, respectively. We can

see that the gender it is easier to predict than the age or race, partly due to a more

skewed distribution on the training data and the higher cardinality of the response set.

Nevertheless, we observe that our models significantly outperform the other baselines

across all the datasets.

6.3.4 Data Analysis

For the first study, we processed all 120M tweets through the topic detection pipeline to

identify posts discussing pregnancy and contraception — a post was considered relevant

to a topic if it contained at least one word from the corresponding lexicon. We found

that 0.06% of the tweets were related pregnancy and 0.01% were about contraception.

Then, we measured how the authors of those tweets were distributed with respect to

the demographic attributes. These measurements were performed at the tweet level,

meaning that users with more than one relevant tweet were counted more than once.

Figures 6.7a and 6.7b show how the discussions about pregnancy and contraception

3We used the implementation provided by clarifai4, which makes their system available through an
API
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Figure 6.4: Label distribution for the demographic inference training data

Figure 6.5: Classification performance of demographic inference models with respect to
average F1 metric

vary across different subpopulations. As expected, the distributions are very different

as some topics are more pertinent than others to different segments of the population,

e.g. tweets about pregnancy are much more likely to have been posted by a woman than

man. Generally speaking, people seem to be more concerned with pregnancy at younger

ages and more about contraception later in life. We can also see that Blacks talk more

about pregnancy than contraception while the opposite is true for Hispanics. The most

salient geographical pattern is with Florida, where contraception is much more discussed

than pregnancy. These simple observations may not be particularly surprising to subject

matter experts, but they do illustrate how demographic information can improve the
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Figure 6.6: Classification performance of mental-health inference models with respect to
average F1 metric

interpretability of results obtained even with simple methods.

Estimating the Prevalence of Mental Disorders

For the second study, we processed the cohort through the aforementioned mental-health

inference pipeline to estimate the prevalence of depression and PTSD, and examine how

these illnesses manifest across the population. We found that 30.2% of the users are

likely to suffer from depression, 30.8% from PTSD, and 20% from both. The first thing to

note is that these estimates are much higher than the current statistics found on the NIH

website, that report a prevalence of 6.7% for depression5 and 3.6% for PTSD6. However,

it should be noted that those statistics are outdated — the depression estimates are from

2015 and the PTSD estimates are from 2003 — and that this cohort is not representative

of the US population. We also observe a significant overlap between people affected by

depression and PTSD, which is not surprising given that the comorbidity between these

disorders is well-known, with approximately half of people with PTSD also having a

diagnosis of major depressive disorder (Flory and Yehuda, 2015).

But how do these conditions affect different parts of the population? To investigate

this question, we looked at how the demographics of the unhealthy people diverge from

5https://www.nimh.nih.gov/health/statistics/major-depression.shtml
6https://www.nimh.nih.gov/health/statistics/post-traumatic-stress-disorder-ptsd.

shtml
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a – Pregnancy

b – Contraception

Figure 6.7: Demographically controlled public health surveillance
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those of the cohort. Figures 6.8b, 6.8a and 6.9 show the estimates for depression, PTSD

and both, controlled for the cohort demographics. We can see very apparent generational

differences — PTSD seems to be more prevalent amongst older people whereas depression

affects predominantly younger people —, but we observe that, in both cases, women

are more susceptible than men. Interestingly, these estimates correlate with the trends

reported by the NIH, but when it comes to race, our findings disagree. We observe

that Blacks and Hispanics are more likely to be affected by mental illnesses, whereas

the NIH reports a higher prevalence amongst Whites. One possible reason for these

disparities is that racial minorities are more likely to come from communities with lower

education rates and socioeconomic status (SES), and to be in a position where they lack

proper health coverage and mental-health care. Reports from the NIH and other US

governmental agencies show that 46.3% of Whites suffering from a mental-illness were

subjected to some form treatment, but this was case for only 29.8% of Blacks and 27.3%

of Hispanics7.

The high costs of treatments compounded with the stigmas and misconceptions

about mental-health can discourage people from more vulnerable communities to seek

help in these cases. While this has been the prevailing view on the racial disparities

in health, recent studies show that the factors such as discrimination and perceived

inequality have a stronger influence on mental-health than it was previously supposed,

even when controlling for the SES (Budhwani et al., 2015). Others have found that

acute and chronic discrimination causes racial disparities in health to be even more

pronounced at the upper ends of the socioeconomic spectrum. One of the reasons being

that for Whites, improvements in SES result in improved health and significantly

less exposure to discrimination, whereas for Blacks and Hispanics upwards mobility

significantly increases the likelihood of discrimination and unfair treatment, as they

move into predominantly White neighborhoods and work environments (Colen et al.,

2017). An in-depth analysis of this issue is out of the scope of this work, but these results

suggest that it deserves further investigation. A follow-up study to investigate the role

of discrimination in mental-health could be conducted by adding a model to identify

users who reported that were victims of discrimination and compare the prevalence of

mental-illness with a control group.

7https://www.integration.samhsa.gov/MHServicesUseAmongAdults.pdf
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a – PTSD

b – Depression

Figure 6.8: Measuring the prevalence of mental illnesses
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Figure 6.9: Depression and PTSD

6.3.5 Discussion

These pilot studies demonstrated how analyses conducted over arbitrary data samples,

devoid from context, can hide the complexity and nuances of the phenomena being

studied. In contrast, demographically controlled SMA can allow for more detailed studies

and insightful analyses. In a real-word application, the insights gleaned by these pilots

could prompt new questions or warrant more thorough investigations. This could involve

deploying new models and pipelines (e.g. expanding the current lexicons or training

new classifiers) or performing qualitative analyses, e.g. using a topic model to tease out

particular “themes” relevant to an issue (e.g. specific contraceptive methods) or looking

at the similarities/differences between healthy and unhealthy cohort members with the

methodology described in Section 5.4.2. In practice, information about how different

subpopulations perceive certain health issues, say contraception, could improve public

health policies and inform intervention campaigns targeted for different demographics.

This is still an experimental methodology and we should refrain from drawing strong

conclusions from the analyses. The system has some noteworthy limitations, namely the

fact that the training datasets for both the demographic and mental-health inference

were produced in a semi-automated fashion and therefore may contain biases, e.g. self-

selection biases from the self-reported mental-health datasets and biases coming from
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the CNN model that was used to generate the training data. These datasets are also

very imbalanced meaning that the models may be better at predicting some categories

than others. Nevertheless, the fact that some of our estimates correlate with statistics

obtained through traditional methodologies suggests that this might be a promising

approach to complement current epidemiology practices.

6.4 Conclusions

This chapter distilled the methods developed in this thesis into an agile modeling frame-

work to reduce the efforts of deriving specialized models for SMA. Then, it demonstrated

how reducing the efforts of model development allows for the deployment of more sophis-

ticated systems. Concretely, the modeling framework was leveraged to operationalize a

methodology to support the creation of digital cohorts of social media users. Conducting

analyses over these cohorts allows analysts to ameliorate both sampling and confirma-

tion biases. To validate this methodology, we conducted a case-study of demographically

controlled social media analysis applied to the public health domain, specifically re-

garding: the discussion of heart-disease, pregnancy and contraception; the prevalence

of depression and PTSD and how these illnesses affect different demographic groups.

To that end, we developed and evaluated DEMOS, a Digital Epidemiology and Mental-

Health Observation System, that provides a platform for rapid deployment of custom

inference models allowing social media analysts to conduct externally valid studies,

vis-a-vis national trends or with focus on specific demographic groups.

To operationalize the system, we developed bespoke specialized user-level models to

predict key demographic traits of social media users (i.e. age, gender and race) and the

probability of the users being affected by a mental disease — compared to the typical

baselines, again we found that our models have a significantly superior performance

across all the tasks, further demonstrating the adequacy of the proposed agile modeling

framework. DEMOS was evaluated by conducting series of demographically controlled

studies over a digital cohort of US based Twitter users. The pilot studies showed that the

information about user demographics can indeed enable more insightful interpretation of

the analyses by disentangling some of the factors that influence an observation. Moreover,

this information helps to make the inherent biases of social media environments more

explicit which allows analysts to control for those biases when interpreting the outcomes

of a study.

This work presents a step forward from typical SMA systems that leverage arbitrary
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(and biased) data samples and assume that all instances contribute equally to measure

a given phenomenon. Such approaches can only capture general trends and measure

how these evolve over time. In contrast, DEMOS can be used to conduct demographically

controlled social media analysis for various applications and has the potential to reach

and account for vulnerable and underrepresented parts of the population. This opens the

door to more responsive epidemiology practices, enabled by the ability to remotely identify

at-risk groups and track the progress or the effects of targeted interventions, in near

real-time. In turn, this can provide empirical support for increased resource allocation

to programs dedicated to preventing and alleviating health related issues, tailored for

specific demographics. Here, we focused our attention on public-health applications

but this system can also be used for other purposes, e.g. demographically controlled

analyses could improve political opinion mining applications and bring these methods

closer to well established polling practices. These systems could even go beyond the

traditional methods, e.g. pollsters often conduct measurements over samples that match

the demographic characteristics of the (predicted) ‘likely voters’ — however, if the actual

voters differ from what was presupposed, then the estimates will be inaccurate. DEMOS

on the other hand, could be used to produce multiple estimates based on different

assumptions about the effective electorate by performing analyses on different digital

cohorts.
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Social media analysts seek to gain insights into current worldly events and cir-

cumstances by extracting and aggregating linguistic signals from large volumes

of social media data. This new data source holds potential for numerous applica-

tions but the noise, brevity and ambiguity of this medium poses challenges to traditional

natural language processing approaches. Therefore, analysts are often forced to rely on

simplistic and sub-optimal methods or devote significant efforts on the development of

specialized models. On the other hand, current SMA practices essentially ignore basic

principles of data-driven research, such as acknowledging the inherent biases of the data

and leveraging robust sampling strategies to account for those biases. This can distort

the insights gleaned by these data and hamper the validity of the studies.

This thesis aimed to address these limitations with two main contributions:

1. A methodology to ease the development of specialized NLP models for noisy text

in low-resource settings by: leveraging unlabeled data and pre-existing linguistic

resources to reduce manual data annotation efforts; and relying on neural represen-

tation learning methods to reduce the efforts of task-specific feature engineering.

This approach was then transposed into an agile modeling framework to accelerate

the deployment of SMA applications.

2. A methodology to conduct demographically controlled social media analyses that

helps to mitigate the biases of social media data. The agile modeling framework

was used to derive demographic inference models to predict key user attributes,
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such as age, gender and race. These model are used to automatically collect, process

and organize social media data, such that it can subsequently be used to sample

demographically representative digital cohorts. To that end, these cohorts can be

leveraged to conduct demographically controlled analyses

7.1 Agile Modeling with Low-Resource Neural
Networks

The proposed approach relies on a novel method to derive low-resource supervised neural

networks by learning generic embeddings from large amounts of unlabeled data, and then

using small labeled datasets to extract task-specific lower-dimensional representations.

Chapter 3 introduced the NLSE, a simple neural architecture based on this approach,

and showed that it can be used to derive specialized document-level models for noisy and

subjective content. Chapter 6 applied the NLSE to derive word-level models, which can

be used to improve lexicon-based SMA systems by automatically expanding small hand-

crafted lexicons. To extend this approach to user-level analyses, Chapter 5 introduced

User2Vec, a neural language model to estimate user embeddings that, similarly to word

embeddings, capture latent user aspects (e.g. political leanings) and similarities. In this

case, however, the similarities can be interpreted as a soft notion of homophily. The

NLSE could then be used to derive specialized user-level models by extracting tailored

representations from the generic user embeddings. This approach was further extended

by combining document representations and user representations to derive models to

support contextualized inferences over highly ambiguous and subjective content, e.g.

involving sarcasm. In these cases, the intended meaning of an utterance might also

depend on the speaker. Therefore, the model extracts lexical representations of the

contents of a document with a Convolutional layer which are concatenated with the

authors user embedding. The resulting vector is then transformed through a hidden

layer that induces tailored representations for the task, and captures the interactions

between documents and authors representations. We refer to these models as Content
and User Embedding Neural Networks.

The models were evaluated, first, over well-known academic datasets and interna-

tional shared task competitions for subjective tasks such: as sentiment analysis, opinion

mining, sarcasm detection, and mental-health inference; and second, over a case study of

real-world social media analysis applied to the social sciences. The overall experimental

results demonstrated that these models significantly and consistently outperform other
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off-the-shelf models — including simpler linear models, which are insufficient to cope

with the noise and ambiguity of social media, and more sophisticated neural models,

which require larger training datasets.

7.2 Demographically Controlled Analyses with
Specialized Models

SMA systems are usually deployed as data processing pipelines to realize the following

steps: (i) data collection; (ii) inference over the data with NLP methods; and (iii) data

analysis. The methods proposed in thesis can be leveraged to improve over traditional

SMA methodologies, as follows:

1. Data Collection: Instead of collecting arbitrary data samples as it is typically

done, analysts are now able to conduct studies on demographically representative

digital cohorts of social media users.

2. Natural Language Processing: Instead of relying on sub-optimal methods or

manually designing task-specific models, analysts can leverage the agile modeling

framework to quickly build specialized models for word-level, document-level and

user-level inferences, even in low-resource settings.

3. Data Analysis: Instead of looking at a single measurement aggregating the raw

signals inferred by the models, often taken out of context, analysts can break down

the results by demographics, thus opening new ways of analyzing and interpreting

the outcomes of the studies.

These methodological improvements were validated in a second case-study of real-world

social media analysis, now focused on public health applications (Chapter 6). The study

consisted of the development and evaluation of DEMOS, a Digital Epidemiology and

Mental-Health Observation System, designed to track discussions around specific public

health issues and monitor the prevalence of mental illnesses over Twitter data. The

system provides a platform for the rapid deployment of custom inference models allowing

social media analysts to conduct externally valid studies, vis-a-vis national trends or

with focus on specific demographic groups. The evaluation was conducted over two pilot

studies of demographically controlled public health surveillance over Twitter — the

first, measuring how different demographic groups engage with different health related

issues; and the second, investigates how mental illnesses affect different demographic
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groups. The studies have shown that this approach can capture and highlight differences

in how specific populations engage with health topics, and how mental health issues

affect these groups. For example, we found that Women and racial minorities are more

susceptible to mental diseases such as depression and PTSD.

These innovations contribute to improve the practice of social media analysis for

applications concerned with human activities that lack enough data to afford data-driven

methods, such as the social sciences and public health. Experts in these fields, will

be able to use social media to ask more pertinent and nuanced questions about the

world and obtain answers much faster than before. In turn, this has the potential to

drastically improve the responsiveness of public policies and programs, and our general

understanding of ourselves and our societies.

7.3 Main Findings

The main findings of this research can be summarized as follows:

1. Supervised Neural Networks can be trained with scarce labeled data

In recent years supervised neural networks, particularly with deep architectures, have

dominated the landscape of machine learning research and applications. One of the

main drawbacks of these methods is the need for large training datasets to be properly

optimized. This research demonstrated that it is possible to learn sophisticated NLP

models with small amounts of labeled data, by pre-training generic neural embeddings

with large amounts of unlabeled data and constraining the capacity of the architectures.

The generic embeddings can be used to extract rich representations for specific tasks,

thus allowing practitioners to reap the benefits of neural representation learning without

paying the usual costs of these methods. This provides a middle ground between feature

engineering and deep learning approaches to build specialized models. These results

dispel the myth that neural representation learning is only feasible with very large

labeled datasets and demonstrate that these methods are particularly beneficial for

subjective tasks.

2. Learning to predict contexts captures latent semantics

Neural language models are able to induce rich word representations by learning

statistical correlations between words and the contexts where they occur, which allows

them to capture latent semantics (in the distributional sense, as hypothesized by Harris
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(1954)). From a machine learning standpoint, we have that word vectors that are used

to predict the same words (i.e. that occur in the same contexts) will converge to similar

solutions. As a result, similar words end up having similar representations which also

helps to improve model generalization. The methods proposed in this work rely heavily

on neural language models since they provide a simple and generic mechanism to

incorporate unlabeled data into the models and reduce feature engineering efforts.

This thesis then extends this idea to learn representations for users. Assuming that

the topics that people choose to discuss and engage with reflect their interests and state

of mind, the distributional principle can be also applied to characterize individuals.

By learning to predict the words that are employed by a user, the model captures the

latent characteristics of users that utter those words. Similarly to the word vectors, if

the vectors of two users are optimized to predict the same words, they will gravitate

towards similar solutions. Having similar users associated to similar representations

offers not only better model generalization, but also provides a mechanism for analysis,

e.g. epidemiologists can identify and characterize at-risk groups and gain insights into

commonalities and differences in populations.

3. Demographic information significantly improves the value of social media analyses

Social media datasets are very noisy and ambiguous and thus analyses based on naive

methods can often paint a misleading picture of the subject of study. This is ever more

pertinent given the trend of increased polarization on controversial issues that has been

observed in many contemporary societies. For example, a single measure of approval or

disapproval on political issues is not very informative as it can mask strong opposing

views held by different segments of the public. Moreover, the universe of social media

users is not representative of the broader population, thus trends gleaned by the analysis

of this data might not be generalizable.

This thesis has shown that including demographic information into social media

analyses can help make some of these biases explicit, and allow analysts to break down

results per demographic strata. This can help to ameliorate the negative effects of

both selection bias and confirmation bias, thereby improving the validity of analyses

concerning national trends. Demographic information will allow analysts to tease out

possible explanations for the observed outcomes, thus fostering deeper insights into

the subjects of study. Moreover, conducting social media analyses over demographically

representative cohorts will allow analysts to ask more fine-grained questions, regarding

not only the topics that are discussed on social media, but also how these vary across the
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population. Ultimately, such analyses can provide stronger evidence to inform decision

processes or to support public policies.

4. Social media is a valuable data source but its analysis requires expertise

This research has shown that social media data can indeed be a valuable data source

to get insights into current trends, events and states-of-affairs. However, effectively

mining this data might not be so easy and straightforward as initially suggested by some

researchers. Social media analyses come with many caveats, and are based on predictive

models that also come with caveats. SMA systems are composed of several models and

components, each of which can introduce biases and errors that might not be easy to

identify without deep knowledge of the subject matter and of the various parts of the

system. Suppose, we use social media to investigate support for a new policy and the

results show something unexpected, e.g. much higher support than it was anticipated.

Can those results be trusted? There are many ways in which those results could be

biased, from poor models to data biases and deliberate manipulation. On the other hand,

analyses that only confirm what we already know have limited value. Nowadays, it is

possible to find data on the internet corroborating any view (even extreme) on any issue.

The question then becomes how to sift through the noise. Therefore, now more than ever,

it is incumbent on experts to make sense of the data, digest the findings of the analyses,

put them in context, and determine their implications.

As NLP technologies evolve we can expect advances on what kinds of knowledge

can be derived from social media. However, one should always be careful about drawing

conclusions from these methods and acknowledge their biases and limitations. This is

particularly important whenever the studies involve human subjects since these methods

can reflect the biases of the analysts (e.g. the choice of the training data). One of the

main goals of this thesis has been to reduce the manual efforts and domain knowledge

that are required to build SMA pipelines. However, the goal is not to replace nor reduce

the contribution of the experts, but to empower them. Alleviating the efforts on repetitive

and time-consuming tasks will allow experts to spend more time designing robust studies

and carefully analyzing their results. Lowering the effective costs of model development

will allow analysts to conduct studies based on multiple such models thus enriching the

value of their analyses.
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7.4 Limitations

7.4.1 Low Resource Learning

It is well known that in many cases simpler machine learning models trained with more

training data outperform more sophisticated models trained with less data (Banko and

Brill, 2001). Specially if the assumptions under which the models operate are reflected in

the task and data. A key assumption of supervised machine learners is that the training

and test data are samples from the same distribution and that the training samples are

independent and identically distributed. A small training set might not be enough to

fully characterize the data distribution. In other words, the model does not see enough

examples to generalize. The problem is that the data we use to test the models might be

similar to the training set (since they were all collected at the same time and with the

same criteria) but not representative of all the data that will be encountered at inference

time. Consequently, the metrics reported in prediction tasks frequently overestimate

the performance the models. This issue is greatly exacerbated when dealing with really

small datasets.

This thesis aimed to improve the quality of the models that can be learned in the

absence of large amounts of labeled data. Low-resource learning methods can allow for

quick analyses into unexpected events (e.g. breaking news, emergency response) and

facilitate exploratory studies. For example, to rapidly create bespoke models and pipelines

to test hypotheses, and identify, evaluate and refine research questions. However, for

analyses involving ambiguous and complex aspects, especially if they involve human

subjects, efforts should be made to ensure that the models are powerful enough to capture

the relevant signals and are trained with enough data to properly generalize. This is

particularly relevant if the studies aim to produce actionable information or have broader

implications.

7.4.2 Static User Embeddings

A limitation of the user embeddings induced by the User2Vec model, is that each user

was represented as a static embedding that encapsulates all the information about a user.

This can be problematic for applications that require modeling phenomena that evolves

and fluctuates over time, for example the expression of some mental diseases such as

chronic stress, anxiety and depression. This can be addressed by including the temporal

structure into the embedding learning process. One way to do this would be to split users
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data into temporal bins and induce a vector for each bin, providing a ‘snapshot’ of the

user at different points in time. Another would be to adopt recurrent neural network

models. These models are able to process inputs sequentially and produce intermediate

representations at each time step, conditioned on the previous steps. As such, we could

process a user’s posts collection sequentially and use the internal representations at

time step t to characterize the user at time t. Applications for these user embeddings
over time include better modeling the onset of specific illnesses and their symptoms,

building non-intrusive systems for early detection, or monitoring the effects of health

interventions on a population.

7.4.3 Digital Epidemiology

Despite the promising results of the digital epidemiology system presented in this thesis,

this work still leaves many open research questions. On the technical side, the research

on methods to infer demographic attributes and mental-health signals from social media

is still in its infancy and advances in these areas will directly improve the quality and

reliability of this system. Moreover, the current implementation still assumes that all the

data comes from legitimate users, and thus it is vulnerable to intentional manipulation

attempts, e.g. by sock puppet social bots (see Ferrara (2017)). This problem is exacerbated

by the fact that the current NLP models are still very easy to fool, particularly simple

lexicon-based methods. Nevertheless, the positive results obtained by our user-level

models suggest that this approach could also be used to detect social bots, or at least

provide a reasonable baseline for improved methods. On the methodological side, it is

still not clear the impact of using self-reported data to build models for the general public,

but more importantly we still do not know how reliable are the signals extracted by SMA

systems with regards to public-health. This leaves many open questions, such as: how

trustworthy are the outcomes of the analyses, if they are to inform actionable decisions?

what kinds of decisions can be informed by these methods?

7.4.4 Ethics, Data Privacy and Consent

The majority of social media analysis systems try to extract signals from pools of publicly

shared posts. If the data is randomly sampled it is unlikely that the sample will contain

more than a few messages from the same user. Moreover, in this case there is no need to

record any personal information about the user. However, as we start moving towards

analyses at the user-level, we are collecting and storing complete records of social media
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users communications. Even though this information is publicly available, people might

not be consciously aware of the implications of sharing all their data and certainly have

not given explicit consent for their data to be analyzed in aggregate. This is even more

pertinent for analyses involving sensitive information about people, such as mental-

health statuses. As it has been demonstrated by the recent incidents involving companies

sharing personal data of their users, there is a serious danger of abuse and exploitation

for systems that collect and store large amounts of personal data.

Even though this is in large part an ethical question, there are technical solutions

that can be used to partially address this issue. One is to use anonymization techniques

to obfuscate any details that allow third parties (even analysts) to identify the individuals

that are involved in the study. Another is to store only the user embeddings and discard

the actual profile content. The representations could then be update when new data

became available. This way it would still be possible to run user-level analytics over those

users, but not document-level ones. In regards to consent, there are initiatives to support

voluntary data donation for research purposes, e.g. the Our Data Helps program1.

7.5 Future Work

This work represents the initial steps towards more accurate inferences over social media

data repositories and thus leaves open many doors for future work. In regards to agile

modeling, this work relies heavily on neural language models and the representations

they produce. The research in this field is still very active and this work will directly

benefit from any developments in this area. For example, Felbo et al. (2017) showed that

emotion-aware embeddings, that yield state-of-the-art results for subjective tasks, can be

induced by training deep neural networks to predict the presence of emoji. Others are

moving towards hierarchical models, that similarly to deep models for computer vision,

capture representations at different levels of abstraction (Peters et al., 2018). Another

related venue worth pursuing is the use of cross-lingual and multi-lingual embeddings, i.e.

learned vectors that represent words in different languages with similar representations

which allow practitioners to train models with labeled data in one language and perform

inference on a different language (Klementiev et al., 2012; Hermann and Blunsom,

2014). This would provide a cheap mechanism to extend SMA to languages that lack

computational linguistics resources. Finally, regarding user embeddings, future work

could investigate how to compose user embeddings to form representations of groups of

1https://ourdatahelps.org/
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people. This could have applications for epidemiology by allowing analysts to characterize

groups and investigate the factors that contribute to the spreading of specific diseases.

Regarding the work on digital epidemiology, future developments include expanding

the analyses to other public health issues and mental diseases. Further work must also

be done to understand how reliable are the indicators induced by these systems, and

how can they be leveraged to inform decisions. The DEMOS case-study was meant as a

proof-of-concept for a large-scale deployment of a digital epidemiology system. However,

these systems can also be deployed for analyses at a local level, for example, measuring

the well-being of students in a school; or implementing ‘neighborhood watch’ programs

where community leaders could directly measure the well-being of their members and

inform first responders in crisis situations. This also raises concerns regarding privacy

and consent, as discussed above. Finally, the ability to use social media to track mental-

health and well-being could also be used for self-analysis and personal development.

Indicators extracted by the models could be complemented with Ecological Momentary

Assessment surveys (Moskowitz and Young, 2006) to periodically assess user well-being

or other factors that contribute to well-being (e.g. exercising, getting enough sleep). In

this regard, I already developed a fully functional rule-based conversational agent for

Slack2 environments to elicit this information from users, in a non-intrusive manner3.

This information could then be aligned with the model indicators to uncover correlations

between the use of language and self-reported measurements of physical and mental

wellbeing. Taking it one step further, we could then use the self-reported measurements

to train personal models to infer these measurements from language use.

2Slack is a team chat application — https://slack.com/
3https://github.com/samiroid/sleek
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